Changes for the Better
MITSUBISHI ELECTRIC
INDICATORS and TRANSDUCERS

Empowering Industries

Table of Contents (Mechanical Indicators)

OOverview and Features 3
-Safety Precautions 5

- Selection Precautions 9
Special Specifications 10
Selection 11
- Products List
- Rectangular Indicators 13
-Wide-angle Indicators 15
- Indicators with Changeover Switch 17
- Mechanical Demand Meters and Demand Meter Relays 18
-Meter Relays 19
- Indicators with Maximum and Minimum Needles, Special Application Meters 21
-Bar-shaped Indicators22
Glossary of Terms 23
Standards 24
Reference Chart for Test Voltages and JIS Mark 25
Mechanical Indicators
Common Specifications 27
Common standard specifications 27
Covers. 28
Scale plate components and items indicated 29
Scale plate indications 30
IStandard Scale Diagrams 31
Outer Dimension Drawings 35
Overall Connection Examples 38
Mechanical Indicator Specifications -DC Ammeters43
YM-206NDA, YM-208NDA, YM-210NDA, YM-8NDA,
YM-10NDA, YM-12NDA, LM-80NDA, LM-110NDA
ODC Voltmeters 47
YM-206NDV, YM-208NDV, YM-210NDV, YM-8NDV, YM-10NDV, YM-12NDV, LM-80NDV, LM-110NDV
-AC Ammeters 49
YS-206NAA, YS-208NAA, YS-210NAA, YS-8NAA,YS-10NAA, YS-12NAA, LS-80NAA, LS-110NAA,YR-206NAA, YR-208NAA, YR-210NAA, YR-8NAA,YR-10NAA, YR-12NAA, LR-80NAA, LR-110NAA
OAC Voltmeters 51
YS-206NAV, YS-208NAV, YS-210NAV, YS-8NAV,YS-10NAV, YS-12NAV, LS-80NAV, LS-110NAV,YR-206NAV, YR-208NAV, YR-210NAV, YR-8NAV,YR-10NAV, YR-12NAV, LR-80NAV, LR-110NAV
OWattmeters 53
YP-206NW, YP-208NW, YP-210NW, YP-8NW, YP-10NW, YP-12NW, LP-80NW, LP-110NW- Varmeters57
YP-206NVAR, YP-208NVAR, YP-210NVAR, YP-8NVAR,YP-10NVAR, YP-12NVAR, LP-80NVAR, LP-110NVAR- Power Factor Meters (for balanced circuits)61
YP-206NPF, YP-208NPF, YP-210NPF, YP-8NPF,
YP-10NPF, YP-12NPF, LP-80NPF, LP-110NPF63
YP-206NPFU, YP-208NPFU, YP-210NPFU, YP-8NPFU,YP-10NPFU, YP-12NPFU, LP-80NPFU, LP-110NPFU-Frequency Meters .66
YP-206NF, YP-208NF, YP-210NF, YP-8NF,
YP-10NF, YP-12NF, LP-80NF, LP-110NF
- Receiving Indicators 67
YM-206NRI, YM-208NRI, YM-210NRI, YM-8NRI,
YM-10NRI, YM-12NRI, LM-80NRI, LM-110NRI,YR-206NRI, YR-208NRI, YR-210NRI, YR-8NRI,YR-10NRI, YR-12NRI, LR-80NRI, LR-110NRI
.69
OIndicators with Changeover Switch 69
AC ammeters
YR-8UNAA, YR-10UNAA, YR-12UNAA

Table of Contents (Transducers)

Overview and Features 105

- Safety Precautions 107
-Safety Precautions
- Requests Regarding Selection
Power, Instrumentation and Peripheral Transducers
(Single Function)
-Products List 111
- Model Name Configuration 111
Specifications According to Product Type
Active Power Transducers
-Current Transducers113
T-51KAA, T-51HAA, T-101SAA
-Current Transducers (Saturated Power) 114
T-51KSS, T-51HSS
- Voltage Transducers 115
T-51KAV, T-51HAV, T-101SAV
- Active Power Transducers 117
T-101HW, T-101SW
-Reactive Power Transducers 119
T-101HVAR, T-101SVAR
Phase Angle Transducers 121
T-101HPA, T-101HPA(U), T-101SPA(U)
-Power Factor Transducers (for Unbalanced Loads) 123
T-101HPF(U), T-101SPF(U)
-Frequency Transducers 125
T-51HF, T-101SF
- Voltage Phase Angle Transducers 126
T-101SY
Instrumentation Transducers-DC Level Transducers127
T-51DL
DC Reverse Transducers 128
T-51DR
- Isolators 129
T-101IS
-High-speed Isolators 130
T-101ISQ
- Limiters. 131
T-51LM
-Adders. 132
T-101AD
-Resistance-bulb Temperature Transducers(Insulated/Non-insulated)133
T-51TP, T-101TPZ
-Thermocouple Temperature Transducers(Insulated/Non-insulated)135
T-101TC, T-101TCZ
-First-order Lag Transducers. 137
T-51DS
Peripheral Transducers
-AC Current Demand Transducers (Moderate Time Interval) 139
T-101HAA(DS)
- AC Voltage Demand Transducers (Moderate Time Interval) 140
T-101HAV(DS)
-Current Transducers with Power Flow Detection 141
T-101HAA(D)
- Leakage Current Transducers 143
T-51LG
-Leakage Current Transducers (with Built-in Low-pass Filter) 145
T-51LGF
- Voltage (Rise/Drop) Detectors 147
T-101VDL, T-101VDH
-Filters 148
-Auxiliary Parts. 149
-Handling 151
■Outer Dimensions 156
-Multi-transducers [Insulated]
- Multi-transducers [Insulated] 157
T-120M
■ Special Application Transducers- Harmonics Transducers165
T-120HA
-Active Power/Active Energy Transducers 171
T-51WWH■Usage/Care/Storage/Request for
Maintenance and Inspection. 173
- Performance 175
OVverall Connection Diagrams. 179
Glossary of Terms 181

\square Overview and Features

High Reliability and Abundant Product Line-up

Electric Indicators

Rectangular indicators					
Y-2N Series			Y-N Series		
Y-206N	Y-208N	Y-210N	Y-8N	Y-10N	Y-12N
64×60	85×75	100×85	82×82	102×102	122×122

Wide-angle indicators

L-N Series	
L-80N	L-110N
80×80	110×110

Depth dimension: 100 mm or less

Equipped with isolation barrier and terminal cover

Symbol details

Depth dimension: 100mm or less . Equipped with isolation barrier and terminal cover
Easy mounting and wiring

Equipped with isolation barrier and terminal cover

(Mechanical Indicators)

Indicators with changeover switch

YR-UN Series		
YR-8UN	YR-10UN	YR-12UN
82×99	102×119	122×139

Demand meters/Demand

meter relays | LB-N Series | |
| :---: | :---: |
| LB-8N | LB- 11 N |
| 80×80 | 110×110 |

Meter relays	
Y-210MRN	L-11MRN
100×83	110×110

Bar-shaped Indicators			
F-N Series			
F-210N	F-213N	F-215N	F-217N
100×30	130×36	150×40	170×42

Easy mounting and wiring

Easy-to-read scales

Scales are bright and easy-to-read, allowing them to perform their essential functions.

Please follow the following precautions when using Mitsubishi Electric products and be sure to carefully read the explanations regarding safety precautions in the boxes marked "Caution." In addition, ensure that any stickers or other items with relevant safety information are delivered to the final user.

1. Precautions concerning usage environment and usage conditions
(1) Do not use in the following locations. Use in such locations may lead to malfunction or reduced service life.

- Locations where the ambient temperature is outside the range of -5 to $+50^{\circ} \mathrm{C}$.
- Locations where the average daily temperature exceeds $35^{\circ} \mathrm{C}$.
- Locations where condensation or relative humidity is less than 30\% or more than 70% (85% for electronic indicators).
\star Moisture-proof treatment is available for high-humidity environments for some electrical indicator models. See page 10 of this catalog or contact a Mitsubishi Electric representative for details.
- Locations with excessive dust, corrosive gas, salinity, or oil fumes.
* Corrosive gases include sulfur dioxide, ammonia, hydrogen sulfide and other gases that corrode metal, plastic and other materials.
is Supplementary anti-corrosion treatment is available for special environments for some electrical indicators. See page 10 of this catalog or contact a Mitsubishi Electric representative for details.
- Locations where indicators are subject to excessive vibration or shock.
it When used in a location subject to excessive vibration, moving parts may resonate and this may cause error and fluctuation of indicated values. In such cases, apply anti-vibration measures to the installed panel or change the installation location.
- Locations directly exposed to rain, water drops, ultraviolet rays, or sunlight.
- Locations at an altitude of 2000 m or more for electric indicators or 1000 m or more for electronic indicators.
- Locations with excessive external noise or radio waves.
- Locations where a large amount of static electricity is generated.
- Locations where there is a high level of waveform distortion or high-frequency waves caused by harmonic/thyristor circuits or other means.
(2) Please consult a Mitsubishi Electric representative regarding the use of indicators for any of the following facilities.
- Nuclear power plants, medical devices, military facilities, airplanes or vehicles.
(3) The products in this catalog are not certified indicators.

They do not comply with the mandatory specifications for electrical meters as specified in the Measurement Act of Japan.

2. Mounting precautions

Please pay attention to the following items during installation.
For safety reasons, installation should only be performed by a professional electrical wiring technician.

- Mount the electrical indicators on metal panels.
- Mount on the panel in such a way that ensures the electrical indicator terminals and charged parts cannot be touched accidently by an operator.
- Install the special accessories for T-100 and T-150 inside the panel. In addition, install them so that it is ensured the accessories cannot be touched accidently by an operator.
. The screws for mounting onto the panel must be tightened by appropriate tools at torques appropriate for the screw size.

$$
\begin{array}{ll}
\text { * Recommended tightening torques } & \text { M3 screws: } 0.48 \sim 0.98 \mathrm{~N} \cdot \mathrm{~m} \\
& \text { M4 screws: } 0.98 \sim 1.47 \mathrm{~N} \cdot \mathrm{~m}
\end{array}
$$

M5 screws: 1.47~1.96N.m

3. Connection precautions

Please pay attention to the following items when making connections.
For safety reasons, installation should only be performed by a professional electrical wiring technician.

- The metal panel must be grounded.
- Before using a voltmeter when connecting to a main power-supply circuit, make sure that an appropriate exterior fuse is installed.
- Indicators that require an auxiliary power supply must not be directly connected to/use a main power supply. For these indicators, use a power supply that is isolated from the main power supply circuit via a voltage transformer or other means.
- Varmeters and power factor meters will not operate correctly with a reverse phase sequence. Use with the correct phase sequence.
- Grounding of the secondary side of an instrument voltage transformer or current transformer is not necessary for low-voltage circuits.

4. Precautions concerning preparation before use

Please read the following carefully before use.
(1) Transportation

Be sure to prevent the indicators from vibration or shock as much as possible during transportation.
In situations where it is possible that indicators will be subject to excessive vibration or shock, remove the indicator from the panel before transportation.
When the indicators are received, check the indicators for any abnormalities in appearance or operation that may have been caused as a result of excessive vibration or shock during transportation.
(2) Check the product name and rating

As a precautionary measure, check the product name and rating (e.g., voltage, current, frequency, phase-wire) before use.
(3) Adjustment

If an indication corresponding to an input is to be adjusted in an indicator with a built-in adjustment resistor such as a DC ammeter or receiving indicator, perform adjustment without applying excessive force to the adjuster. Otherwise, the adjuster may break.
Additionally, avoid using the adjuster under normal circumstances.
(4) Insulation resistance test and voltage test

Please read the following carefully before performing an insulation resistance test or voltage test. Not doing so may cause indicator failure.

- When performing an insulation resistance or voltage test between 1) an electrical circuit and an outer casing, or 2) a voltage circuit and a current circuit, short-circuit the input terminals in both the current and voltage circuits. Not doing so may cause the indicator to malfunction.
- The applied voltage for the voltage test varies according to the indicator model. Please note the voltages indicated in this catalog.
- For the applied voltage of the impulse withstand test, apply a $1.2 \times 50 \mu$ s standard lightning impulse voltage waveform with a full wave voltage of 5 kV six times or less.
- Be careful of where voltage is applied; applying voltage across terminals of equal potential, such as across VT input terminals, may cause failure.

5. Usage precautions
 Please conform to the following during use.

	(1) Use within the rated range. Use outside of the rated range may cause malfunction or failure. - Applying an electric current exceeding the rated value may cause a failure. Note that this excludes certain models (AC ammeters with expanded scales), for which a temporary current (less than one minute at three times the rated value) may be applied. With the LM-11MRN, LM-11MRHN, LR-11MRN, and LR-11MRHN meter relays, when interruption of the auxiliary power supply occurs, the contact output state immediately before interruption is memorized. Thus, depending on the state during recovery from interruption, the contact output may be abnormal. After recovery from interruption, to return the indicator to normal operation, perform the resetting operation after moving the setting needle past the driving needle using the setting knob (see p. 90 of this catalog for details). With the LM-11ZN and LM-11YN indicators with maximum and minimum needles, LB-8ZN, LB-11ZN, LB-11YN, LB-11ZRN, and LB-11YRN demand meters, and LB-11ZRMN demand meter relay, set the current application time of the electromagnetic remaining needle resetting terminal to "within 5 seconds." Burnout will occur if current application is continued for 5 seconds or longer. (2) If, when using a movable iron-core indicator by connecting it to the output side of an inverter, the carrier frequency of the inverter is set higher than 5 kHz , the indicator may generate heat and failure may occur. Use a carrier frequency of 5 kHz or less. (3) The upper-limit alarm and lower-limit alarm settings of the meter relay and demand meter relay must be set correctly. If the settings are incorrect, an alarm will not be generated when an alarm is needed. (4) A shunt (SHT) generates heat and must not be touched by bare hands as it will cause a burn. Additionally, select a well-ventilated location for installation and mount the unit giving consideration to heat radiation. (Refer to p .47 of the catalog.) (5) Do not remove or modify the cover of an indicator, otherwise failure, electrical shock or fire may occur.

6. Precautions concerning repair/response in case of failure/abnormality

If an abnormal noise or heat is generated or a failure occurs, take immediate measures such as shutting off the input, and contact the nearest Mitsubishi Electric System \& Service Co. Ltd. branch or relevant Mitsubishi Electric branch.

7. Maintenance and inspection

Perform the following inspections to ensure correct use of indicators.
1 Daily inspection
Check for the following:

- Damage to the indicator
- Abnormal functioning
- Abnormal noise or odor
- Presence of debris, dust or water

2 Periodic inspection
In addition to the above items, check for the following:

- Loose mounting or loose terminal wire connections
- Overheating or deformation due to stress to terminals, outer casings or other components.

Always perform terminal wire connection inspections when power to the devices has been interrupted. Do not touch charged parts of the terminals while current is being applied. There is danger of electrical shock, electrical burns, and damage to equipment.
(1) The cover has an antistatic treatment; please follow these precautions when cleaning it.

- Wipe the cover surface with a soft cloth to remove any dust/dirt. If the dust/dirt cannot be removed, the cover should be replaced.
- To prevent cover deformation or discoloration, or peeling of the cover coating, do not use benzene, thinner or similar cleaning agents on the cover and avoid placing any type of chemically-treated cloth on the cover for a long period of time.
- Static electricity can cause unstable needle movement. If this happens, it may be necessary to coat the cover with a commercially available antistatic agent.

8. Storage precautions

(1) Do not store indicators for long periods in the following locations. Long-term storage in such locations may lead to malfunction or reduced service life.

- Locations where the ambient temperature is outside the range of -20 to $+60^{\circ} \mathrm{C}$.
- Locations where the average daily temperature exceeds $35^{\circ} \mathrm{C}$.
- Locations where the humidity is 90% RH or more and dew condensation occurs.
- Locations with excessive dust, corrosive gas, salinity, or oil fumes.
* Corrosive gases include sulfur dioxide, ammonia, hydrogen sulfide and other gases that corrode metal, plastic and other materials.
- Locations with excessive vibration or shock.
- Locations directly exposed to rain, water drops, ultraviolet rays, or sunlight.
(2) When storing the indicators, turn off the power, remove the wiring and place in a vinyl bag, box or other container.

9. Disposal precautions
(1) Please note that the electric/electronic indicators do not use batteries.
(2) Dispose of the indicators following the procedures for disposal of general industrial waste.

- Warranty

(1) The warranty period shall be one year from the date of purchase or 18 months from the date of manufacture, whichever is earlier. In addition, the repair of any failure due to a customer's intentional or negligent actions shall incur a service charge, irrespective of whether or not the warranty is still valid.
(2) Mitsubishi Electric shall not be liable for:

- Damage that cannot be attributed to Mitsubishi Electric; Lost opportunity or earnings resulting from failure of a Mitsubishi Electric product; Damage, secondary damage or compensation for an accident resulting from special circumstances regardless of whether or not the circumstances were foreseeable; Damage to products/Other services for products not manufactured by Mitsubishi Electric.

Service life

The expected service life of electric indicators is 10 years.

* The expected service life is the period or number of operations for which the indicator can be used without functions deteriorating to a level that impairs practical use, based on the condition that the equipment or material is used according to standard specification conditions. Please note that the expected service life is only a guide and performance is not guaranteed for this period.
(Excerpt/Summary of "Expected Service Life of Electrical Equipment," in the September, 1998 issue of the Journal of the Institute of Electrical Installation Engineers of Japan.)

1 Selection of indicator ratings

Application of an input exceeding a rating may cause failure or reduced service life.
In cases where a rating value may be exceeded temporarily due to a starting current of a motor or other reason, select an expanded scale indicator.
Meter relays respond instantaneously and thus output a signal immediately when the starting current or other current exceeds a set value.
When it is necessary to temporarily prevent detection, add an external circuit.

2 Distortion of input waveform

Error occurs readily when the input waveform is distorted.
AC ammeter/voltmeter error is comparatively low if the indicator operates using movable iron core or approximate effective value rectifications. However, please note that the internal parts of movable iron core indicators generate heat when a harmonic current is input, which may lead to deformation or scorching of the casing. For this reason, use a carrier frequency of 5 kHz or less for inverter circuits.

3 Use a power factor meter for unbalanced loads if the 3-phase load is unbalanced

 Power factor meter errors may occur if the load of a balanced circuit becomes unbalanced. Select a power factor meter for unbalanced loads if it is possible that the 3-phase load will be unbalanced.
4 Error may occur due to extremely low input current

Power factor meter errors may occur if the input current is significantly lower than the rated current.
When selecting the rated primary current of a CT, ensure that the secondary current during actual use will be $1 / 5$ or more of the rated secondary current of the CT.

5 Malfunction may occur due to decrease of input voltage

Wattmeters or varmeters may malfunction if the input voltage decreases. Ensure that the input voltage does not decrease to 85% or less of the indicator's rated voltage.

6 Use a special specification product in an environment with high temperature, high humidity, or corrosive gas

Insulation degradation or failure may occur when the product is used under an environment with high temperature, high humidity, or corrosive gas (e.g., in a wastewater treatment plant, sewage treatment plant, chemical plant, rubber manufacturing plant).
Please select a model with special specifications such as anti-corrosion or moisture-proof treatment.

7 Special specification products

Please specify the necessary specifications or contact a Mitsubishi Electric representative if you require a specialspecification model (see p.10).

\square Special Specifications

The information in the following table relates to special specifications for mechanical indicators. Please contact a Mitsubishi Electric representative for information regarding special specifications for electronic indicators.

Application	Specification		
Mounting attitude	The standard attitude for mounting indicators is Please specify the mounting angle if a non-stan	al. mounting attitude is requir Example of mounting angle designation ANGL (30°)	Example of mounting angle designation ANGL (150°)
	Moisture-proof treatment -Use of indicators in high-humidity environments may cause mold to grow or the insulation resistance to deteriorat To prevent this, a special moisture-proof coating and anti-corrosion plating are used. - Applicable models: Y-2N Series, Y-N Series, L-N Series, F-N Series -A "moisture-proof" sticker is attached to products that have been treated. -This treatment cannot be applied to some models. Please contact a Mitsubishi Electric representative for details.		
Corrosive gases	Supplementary anti-corrosion treatment -This treatment is a simplified anti-corrosion treatment for environments where the level of corrosive gases is low. (In environments where there is a high level of corrosive gases such as at sewerage-/water-treatment, rubber or chemical plants, indicators are generally protected with anti-corrosion casings.) The treatment involves use of a sealed structure and anti-corrosion plating. -Applicable models: Y-2N Series, Y-N Series, and L-N Series - A supplementary anti-corrosion sticker is attached to products that have been treated. - This treatment cannot be applied to some models. Please contact a Mitsubishi Electric representative for details.		
High-frequency circuits	-Use the following models for high-frequency exceeded. Please specify the frequency when ordering.	with which the commercia	equency of 50 to 60 Hz is
Products complying with foreign standards	-Products that comply with foreign standards such as ANSI and BS can also be manufactured. When ordering, please specify the relevant standards and frequency. - Models with JIS indications comply with IEC standards (no changes necessary). Please note that the products in this catalog do not have the CE mark.		
Special characters and symbols	-Please clearly specify the language and font settings required (for example, Japanese or English characters; uppercase or lowercase characters). Orders without language/font settings specified will be manufactured according to Mitsubishi Electric's standard specifications (lowercase English characters, Helvetica regular font).		
Special scale models	- Special scale models can be manufactured (please submit detailed diagrams). - In cases where the indicator input and the scale values are not proportional, please submit an input-scale conversion table.		

Please refer to the following when selecting an electric indicator.

Item	Selection procedure				Page
	Measurem	ment element	Indicator type	Series	
Mechanical indicators	DC electrical quantity measurement	DC ammeters, DC voltmeters	Rectangular indicators	Y-2N Series, Y-N Series	43~48
			Wide-angle indicators	L-N Series	
			Meter relays	YM-210MRN Series	79~80
				LM-11MRN Series	
			With maximum/minimum needles	LM-11ZN Series LM-11YN Series	89~90
			Bar-shaped indicators	F-N Series	97
	AC electrical quantity measurement	AC ammeters, $A C$ voltmeters	Rectangular indicators	Y-2N Series, Y-N Series	49~52
			Wide-angle indicators	L-N Series	
			With changeover switch	YR-UN Series	69~70
			Demand meters	LB-N Series	72
			Demand meter relays		75
			Meter relays	YR-210MRN Series	81~82
				LR-11MRN Series	
			With maximum/minimum needles	LM-11ZN Series LM-11YN Series	89~90
			Bar-shaped indicators	F-N Series	98
		Wattmeters	Rectangular indicators	Y-2N Series, Y-N Series	53~56
			Wide-angle indicators	L-N Series	
			Demand meters	LB-N Series	73~74
			Meter relays	YM-210MRN Series	83~84
				LM-11MRN Series	
		Varmeters	Rectangular indicators	Y-2N Series, Y-N Series	57~60
			Wide-angle indicators	L-N Series	
			Meter relays	YM-210MRN Series	83~84
				LM-11MRN Series	
		Power factor meters	Rectangular indicators	Y-2N Series, Y-N Series	61~65
			Wide-angle indicators	L-N Series	
			Meter relays	YM-210MRN Series	85
				LM-11MRN Series	
		Frequency meters	Rectangular indicators	Y-2N Series, Y-N Series	66
			Wide-angle indicators	L-N Series	
			Meter relays	YM-210MRN Series	86
				LM-11MRN Series	
	Telemetry measurement Receiving indication	Receiving indicators	Rectangular indicators	Y-2N Series, Y-N Series	67~68
			Wide-angle indicators	L-N Series	
			Demand meters	LB-N Series	73~74
			Meter relays	YM-210MRN Series	87
				LM-11MRN Series	
			With maximum/minimum needles	LM-11ZN Series LM-11YN Series	89~90
			Dual-element indicators	LM-11NE	95
			Bar-shaped indicators	F-N Series	97
	Ground voltage measurement	Ground voltmeters	With maximum/minimum needles	LM-11ZN Series LM-11YN Series	89~90, 92
		Earth-leakage detectors	(Special application indicators)	LM-11NGD	91~92
	Synchroscopy	Synchroscope	(Special application indicators)	LI-11NSY	93~94

Item	Selection procedure			Page
	Indicator type		Selection item	
Front face outer dimensions	Rectangular indicators	Y－2N Series	64×60（ $\mathrm{Y} \square-206 \mathrm{~N} \square \square$ ），85×75（Yロ－208N■口） 100×85（Yロ－210Nロロ） Note 1	35
		Y－N Series	$82 \times 82(\mathrm{Y} \square-8 \mathrm{~N} \square \square), 102 \times 102(\mathrm{Yh}-10 \mathrm{~N} \square \square)$ $122 \times 122(\mathrm{Y} \square-12 \mathrm{~N} \square \square)$ \qquad	36
	Wide－angle indicators	L－N Series	80×80（Lロ－80N $\square \square$ ），110×110（Lロ－110Nロロ）Note 1	37
	Indicators with changeover switch	YR－UN Series	82×109（YR－8UN■प），102×119（YR－10UNDロ） 122X139（YR－12UNDC）	69～70
	Demand meter relays	LB－N Series	80×80（LB－8ZNロロ），110×110（LB－11ロNロロ）Note 1	72～75
	Meter relays	Y－210MRN Series	100×83（Y $\square-210 \mathrm{MR} \square \mathrm{N} \square \square) \quad$ Note 1	78
		L－11MRN Series	110×110（L \square－11MR $\square \mathrm{N} \square \square$ ）${ }^{\text {a }}$（ ${ }^{\text {a }}$	
	Bar－shaped indicators	F－N Series	$100 \times 30(\mathrm{~F} \square-210 * \mathrm{~N}), 130 \times 36(\mathrm{~F} \square-213 * \mathrm{~N})$ Note 1 $150 \times 40(\mathrm{~F} \square-215 * \mathrm{~N}), 170 \times 40(\mathrm{~F} \square-217 * \mathrm{~N})$ Note 2	99～100
Scale	DC ammeters，DC voltmeters AC ammeters，AC voltmeters Wattmeters，varmeters In common Receiving indicators DC ammeters		A selection should be made so that the maximum scale value is approximately 1.2 to 1.5 times the rated value or the steady－state value of the circuit to be measured． For the maximum scale，any of the following values are recommended（or any of these values multiplied by 10 resulting in a whole number）． $1,1.2,1.5,2,2.5,3,4,5,6,7.5,8$（ 4.5 and 9 are also recommended in the case of voltmeters）	
			Select a value that is 1.5 times or more than the load current． When combining with a shunt，in general，make a selection that matches the rated value of the shunt．	
	DC voltmeters		Select a value 1.2 to 1.5 times the circuit voltage．	
	AC ammeters		The selection should have a maximum scale value approx． 1.5 times the load current． When combining with a current transformer（CT），make a selection that matches the rated value of the CT．	
	AC voltmeters		Select a value 1.2 to 1.5 times the circuit voltage． When combining with a voltage transformer（VT），select a value approx． 1.36 times the rated value of the VT．	
	Wattmeters，varmeters		Select according to the calculation result of：VT ratio \times CT ratio \times indicator rating（Po） Refer to the＂Scale Selection Reference Table＂（wattmeter：p．56；varmeter：p．60）．	
	Receiving indicators		Select so as to match the rated value of the device that the indicator is combined with（e．g．，transducer，sensor）．	
	Power factor meters		The standard scale is LEAD $0.5-1$－LAG 0.5 ． A LEAD 0－1－LAG 0 scale can also be manufactured（values between 0 and 0.5 are for reference only）．	
	Frequency meters		Select according to the frequency of the circuit to be measured． In general，for 50 Hz ，select a $45-55 \mathrm{~Hz}$ scale；for 60 Hz ，select a $55-65 \mathrm{~Hz}$ scale and for $50 / 60 \mathrm{~Hz}$ common use，select a $45-65 \mathrm{~Hz}$ scale．	
	Ground voltmeters		Select so that the maximum scale value is the measured circuit＇s voltage or 1.35 times this value．	
Indicator ratings	DC ammeters，DC voltmeters		The indicator rating is the input value corresponding to the maximum scale value．	43～48，79～80， 97
	AC ammeters，AC voltmeters			49～52，81～82， 98
	Wattmeters		The secondary side rated voltage of a VT is selected as the rated voltage and the secondary side rated current of a CT is selected as the rated current． Additionally，the rated power（or rated reactive power）Po is selected to be within a range of 0.8 to 1.2 times the secondary side rated power of the transformer（VT，CT）．	$\begin{gathered} 53 \sim 56,83 \sim 84 \\ \hline 57 \sim 60,83 \sim 84 \end{gathered}$
	Varmeters			
	Power factor meters		Generally，the secondary side rated voltage of a VT is selected as the rated voltage and the secondary side rated current of a CT is selected as the rated current．	61～65， 85
	Frequency meters		Generally，the secondary side rated voltage of a VT is selected as the indicator rating．	66， 86
	Receiving indicators		The indicator rating is the input value corresponding to the maximum scale value．	67～68，87， 97
	Indicators with changeover switch			69～70
	Earth－leakage detectors			91～92
	Synchroscopes		Generally，the secondary side rated voltage of a VT is selected as the indicator rating．	93～94
Cover	Without setting needle		Black（B）needles are standard specification．Transparent（ T ）and special color（ F ）needles can also be manufactured．（Transparent cover (G) needles can only be manufactured for the $\mathrm{Y}-\mathrm{N}$ and $\mathrm{Y}-2 \mathrm{~N}$ Series．）	28
	With setting needle		Black（BR），transparent（GR），and special color（FR）needles are available． （Please note that not all options are available for all models．）	
Special specifications	Refer to the＂Special Specifications＂section on page 10 for information regarding specifications for environments where there are special conditions such as high temperature／humidity（moisture－proof treatment），corrosive gases（supplementary anti－corrosion treatment）or high－frequency circuits．			10

Note 1．The empty squares（ \square ）are replaced with letters／numbers to specify the model and specifications．
Note 2．The asterisks（＊）are replaced with S or D to identify whether the indicator has one（S）or two（D）needles．

1. Rectangular Indicators (Y-2N Series, Y-N Series)

Remarks All indicators, excluding special grade and foreign standard specification indicators, comply with the Japanese Industrial Standards relating to direct-acting electrical indicators and have the JIS mark.
However, the JIS mark may not apply depending on the operating circuit voltage or rated voltage. Refer to the Reference Chart for Test Voltages and JIS Mark on $p .25 / 26$ for details.
Note 1. The operating circuit voltage is 300 V or less for the $\mathrm{Y}-2 \mathrm{~N}$ Series and 600 V or less for the Y-N Series.
Note 2. Parentheses () indicate that some models cannot be manufactured with this rating. Refer to the specifications tables starting on p. 45 for details.
Note 3. Some models cannot be manufactured for some ratings. Refer to the specifications tables starting on p. 45 for details.
Note 4. Please designate the frequency if a special accuracy class is required for an $A C$ indicator.

O	Standard specifications
\bigcirc	Quasi-standard specifications
\triangle	Special specifications

Indicator type				Wattmeters		Varmeters		Balanced circuit Unbalanced loads		Frequency meters		Receiving indicators			
Appearance															
Accuracy (class)				2.5	1.5	2.5	1.5	5		1	0.5	2.5	1.5	2.5	1.5
	Y-2N Series		64×60	YP-206NW	-	YP-206NVAR	-	YP-206NPF	YP-206NPFU	YP-206NF	-	YM-206NRI	-	YR-206NRI	-
			85×75	YP-208NW	-	YP-208NVAR	-	YP-208NPF	YP-208NPFU	YP-208NF	-	YM-208NRI	-	YR-208NRI	-
			100×85	YP-210NW	-	YP-210NVAR	-	YP-210NPF	YP-210NPFU	YP-210NF	-	YM-210NRI	-	YR-210NRI	-
	Y-N Series		82×82	YP-8NW	-	YP-8NVAR	-	YP-8NPF	YP-8NPFU	YP-8NF	-	YM-8NRI	-	YR-8NRI	-
			102×102	YP-10NW	-	YP-10NVAR	-	YP-10NPF	YP-10NPFU	YP-10NF	-	YM-10NRI	-	YR-10NRI	-
			122×122	-	YP-12NW	-	YP-12NVAR	YP-12NPF	YP-12NPFU	-	YP-12NF	-	YM-12NRI	-	YR-12NRI
Operation principle				Transducer		Transducer		Transducer		Transducer		Movable coil		Rectifier	
	1-phase 2-wire		10V 5A	0.4~0.6kW		-		Note 5 LEAD LAG $0.5 \sim 1 \sim 0.5$		$\begin{aligned} & 45 \sim 55 \mathrm{~Hz} \\ & 55 \sim 65 \mathrm{~Hz} \\ & 45 \sim 65 \mathrm{~Hz} \end{aligned}$		$100,200,300 \mu \mathrm{~A}$$500 \mu \mathrm{~A}$$1,5,10,20 \mathrm{~mA}$$1,3,5,10,15 \mathrm{~V}$$30,50,100 \mathrm{~V}$Zero-suppressedindicator$1-5,2-10 \mathrm{~mA}$$4-20,10-50 \mathrm{~mA}$$1-5 \mathrm{~V}$		Note 1,2 $(200), 300,500 \mu \mathrm{~A}$ $1,3,5,10,20 \mathrm{~mA}$ $30,50,75 \mathrm{~mA}$ $100,200,500 \mathrm{~mA}$ $1,3,5,10,15,20 \mathrm{~A}$ $5,10,30,50,75 \mathrm{~V}$ $100,150,300 \mathrm{~V}$	
	1-phase 3-wire		/200V 5A	0.8~1.	2kW			-							
	3 -phase 3-wire		10 V 5	0.8~1.2kW		0.8~1.2kvar		$\text { LEAD0.5~1~0.5LAG }{ }^{\text {Note } 6}$							
			20 V A	1.6~2.	4kW										
	3-phase 4-wire		/110V 5A	0.8~1.2kW		0.8~1.2kvar									
			/190V 5A	1.4~2.0kW		1.4~2.0kvar									
		220	/380V 5A	2.8~4.0kW		-		-							
	Black (B)			()		()		(()		()		()	
	Cover Transparent (G)			\bigcirc											
	Special color coating (F)			\triangle											
	Red needle			\bigcirc											
l	Special accuracy class Note 4			O(Class 1.5)	O(Class 1)	O(Class 1.5)	O(Class 1)	-		-		\bigcirc (Class 1.5) O(Class 1)		\bigcirc (Class 1.5) \bigcirc (Class 1)	
	Foreign standards			\triangle											
	Special environment			\triangle											
	Double scale			\bigcirc		\bigcirc		-		\bigcirc		\bigcirc		\bigcirc	
क Colored lines/bands				\bigcirc		\bigcirc		\bigcirc		-		\bigcirc		\bigcirc	
Adjustment resistor				-		-		-		-		\bigcirc		-	
Accessories				T-150 1 unit	-	T-150 1 unit	-	$\begin{array}{\|c\|c\|} \hline \text { Note } 7 \\ \hline \text { T-100 } 1 \text { unit } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Note 88 } \\ \hline \text { T-150 } 1 \text { unit } \\ \hline \end{array}$	-		-		-	
Page with specifications table				53		57		61	63	66		67		68	

Note 5. 1-phase, 2-wire power factor meters can only be manufactured for YP-12NPF.
Note 6. 3-phase, 4 -wire power factor meters can only be manufactured for YP-206NPFU, YP-208NPFU, YP-210NPFU, YP-8NPFU, YP-10NPFU and YP-12NPFU.
Note 7. T-100 is provided as an accessory with YP-206NPF, YP-208NPF, and YP-210NPF.
Note 8. T-150 is not provided as an accessory with YP-12NPFU.

Model Naming System

$\mathbf{Y} \quad \mathbf{S}$	206N									
Y-N Series Y-2N Series (Rectangular indicator)	Operation principle		Size (widthXheight)				Indicator type			
	Code	Operation principle	Code	Size (mm)	Code	Size (mm)	Code	Indicator type	Code	Indicator type
	M	Movable coil	206N	64×60	8N	82×82	DA	DC ammeter	VAR	Varmeter
	S	Movable iron core	208N	85×75	10N	102×102	DV	DC voltmeter	PF	Power factor meter (balanced circrit)
	R	Rectifier	210N	100×85	12N	122×122	AA	AC ammeter	PFU	Power factor meier (unbalanced load)
	P	Transducer					AV	AC voltmeter	F	Frequency meter
							W	Wattmeter	RI	Receiving indicator

2. Wide-angle Indicators (L-N Series)

Remarks All indicators, excluding special grade and foreign standard specification indicators, comply with the Japanese Industrial Standards relating to direct-acting electrical indicators and have a JIS mark.
However, the JIS mark may not apply depending on the operating circuit voltage or rated voltage. Refer to the Reference Chart for Test Voltages and JIS Mark on $p .25 / 26$ for details.
Note 1. The operating circuit voltage is 600 V or less.
Note 2. Some models cannot be manufactured for some ratings. Refer to the specifications tables starting on p. 45 for details.
Note 3. Models with an indicator rating of 600 V are provided with the KR-1 accessory.
Note 4. Please specify the frequency if a special accuracy class is required for an $A C$ indicator.

Model Naming System

〇	Standard specifications
\bigcirc	Quasi-standard specifications
\triangle	Special specifications

Note 5. 1-phase, 2-wire power factor meters can only be manufactured for LP-110NPF.
Note 6. 3-phase, 4-wire power factor meters can only be manufactured for LP-80NPFU and LP-110NPFU.
Note 7. T-150 is not provided as an accessory with LP-110NPFU.
3. Indicators with Changeover Switch (YR-UN Series)

Remarks All indicators, excluding special grade and foreign standard specification indicators, comply with the Japanese Industrial Standards relating to direct-acting electrical indicators and have a JIS mark.
Note 1. The 3-terminal, CT-combined models of YR-8UNAA and YR-10UNAA operate on the principles of the movable iron core.
Note 2. The operating circuit voltage is 600 V or less.
Note 3. A 4-terminal AC ammeter to be combined with a transformer can be manufactured if required.

Model Naming System

O	Standard specifications
\bigcirc	Quasi-standard specifications
\triangle	Special specifications

4. Mechanical Demand Meters and Demand Meter Relays (LB-N Series)

Indicator type			Demand meters								Demand meter relays		
			AC	neters	AC	neters		Wattmeter		Receiving indicators	AC ammeters		
Appearance													
Accuracy class (driving needle)			2.5	1.5	2.5	1.5		1.5		1.5	1.5		
	Needle Size		80×80	110×110	80×80	110×110		110×110		110×110	110×110		
	With needle showing max. value remaining		LB-8ZNAA	LB-11ZNAA	LB-8ZNAV	LB-11ZNAV		LB-11ZNW		LB-11ZNRI	-		
	With needle showing min./max values remaining		-	-	-	-		LB-11YNW		LB-11YNRI	-		
		With needle showing max. value remaing	-	LB-11ZRNAA	-	-		LB-11ZRN		LB-11ZRNRI	LB-11ZRMNAA		
		Withnedle stovingmin/.max valus esenaing	-	-	-	LB-11YRNAV		LB-11YRN		LB-11YRNRI	-		
Operation principle			Bimetal (instantaneous rectifying meter)				Bimetal (instantaneous meter is movable coil)				Bimetal (instantaneous rectifying meter)		
Indicator ratings			5A (combined with current transformer)		150 V (combined with instrument voltage transformer)		1-phase	110 V 5A	0.4~0.6kW	DC 1 mA(internal resistance:$1 \mathrm{k} \Omega)$	5A (combined with current transformer)		
			2-wire	220 V 5 A			0.8~1.2kW						
			3-phase	110 V 5 A			0.8~1.2kW						
			3 -wire	220 V 5 A			$1.6 \sim 2.4 \mathrm{~kW}$						
			3 -phase 4-wire	$\left\lvert\, \frac{110}{\sqrt{3}} / 110 V 5 A\right.$			0.8~1.2kW						
Time interval (minutes)					2, 15	2, 5, 10, 15	2		2,15			2, 15	10, 15
Cover		Black (B)			(()		()			()	()
		Special color coating (F)			\triangle					\triangle		\triangle	\triangle
Contact configuration					-								No-voltage 1C contact
Auxiliary power supply			-					100VAC	C ${ }_{-15}^{+10} \% 50$	60Hz	both 100-110VAC/DC		
Remaining needle resetting			Both manual and electromagnetic resetting (electromagnetic resetting voltage: both 100-110VAC/DC)										
Colored lines/bands								\bigcirc		\bigcirc	\bigcirc		
Accessories							T-150,	T-150LB 1	unit each	T-150LB 1 unit	-		
Page with specifications table			72		72		73			73	75		

Remarks All indicators, excluding special grade and foreign standard specification indicators comply with the Japanese Industrial Standards relating to direct-acting electrical indicators and have a JIS mark (excluding LB-8ZNAA, LB-8ZNAV and LB-11ZRMNAA).
Note 1. Use an AC indicator in combination with an instrument current transformer and an instrument voltage transformer.

Model Naming System

\square Products List

5. Meter Relays

Remarks These models do not have a JIS mark.

■ Model Naming System

O	Standard specifications
\bigcirc	Quasi-standard specifications
\triangle	Special specifications

Note 1. The YM-210MRNPF, YM-210MRHNPF, LM-11MRNPF, and LM-11MRHNPF models (provided with the T-100 accessory) are for 3-phase, 3 -wire balanced circuits.
6. Indicators with Maximum and Minimum Needles

Indicator type		DC ammeters	AC ammeters	AC voltmeters	Receiving indicators
Appearance					
Accuracy class		1.5 (remaining needle: 2)	1.5 (remaining needle: 2)		. 5 (remaining needle: 2)
	Size (mm)	110×110	110×110	110×110	110×110
Model name	With max. value remaining needle	LM-11ZNDA	LM-11ZNAA	LM-11ZNAV	LM-11ZNRI
	With max. and min. value remaining needles	LM-11YNDA	LM-11YNAA	LM-11YNAV	LM-11YNRI
Operation principle		Movable coil	Rectifier		Movable coil
Indicator ratings		$\begin{gathered} 5,10,15,20 \mathrm{~mA} \\ 1,3,5,10,15 \mathrm{~A} \text { Note } 1 \end{gathered}$	$\begin{gathered} 1,5,10,15 \mathrm{~A} \\ 20,30 \mathrm{~A} \\ \hline \end{gathered}$	$\begin{gathered} 100,110,150,190 \mathrm{~V} \\ 260,300 \mathrm{~V} \end{gathered}$	5 mA
Response time		0.3 seconds	0.1 seconds	0.1 seconds	0.3 seconds
Cover	Black (B)	((()	(
	Special color coating (F)	\triangle	\triangle	\triangle	\triangle
Remaining needle resetting		Both manual and electromagnetic resetting (electromagnetic resetting voltage: both 100-110VAC/DC)			
Accessories		-	T-150 1 unit	T-150 1 unit	-
Page with specifications table		89			

Remarks These indicator models do not have the JIS mark.
Note 1. Models with a rating exceeding 15A DC are manufactured as 300 mV -shunt-combined units.

7. Special Application Meters

Indicator type		Earth-leakage detectors	Synchroscopes	Dual-element indicators
Appearance				
	Application	Detects earth faults of 3 -phase 3 -wire circuits	Detects generator-side and bus line-side phases	Measures two elements
	Rectangular indicator	-	-	-
	Wide-angle indicator	LM-11NGD	LI-11NSY	LM-11NE
Accessories		T-150 1 unit	T-150 1 unit	-
Page with specifications table		91	93	95

Remarks The synchroscope and dual-element indicator are compliant with Japanese Industrial Standards relating to direct-acting electrical indicators and therefore have the JIS mark.

$○$	Standard specifications
\bigcirc	Quasi-standard specifications
\triangle	Special specifications

8. Bar-shaped Indicators (F-N Series)

Indicator type			DC indicators				AC indicators			
Appearance										
Accuracy class			1.5 or 2.5	1 or 1.5			2.5	1.5		
Size (mm)			100×30	130×36	150×40	170×42	100×30	130×36	150×40	170×42
Model name			FM-210SN	FM-213SN	FM-215SN	FM-217SN	FR-210SN	FR-213SN	FR-215SN	N FR-217SN
			FM-210DN	FM-213DN	FM-215DN	FM-217DN	-	-	-	-
Operation principle			Movable coil type				Rectifying type			
Indicator ratings			(100), 500mA Note 1 $1,5,10,50,100,500 \mathrm{~mA}$ Note 2 $1,3,5,10 \mathrm{~A}$ $4-20 \mathrm{~mA}$ (zero-suppressed indicator)				500 mA Note 1 $1,5,10,50,100,500 \mathrm{~mA}$ $1,3,5 \mathrm{~A}$			
			$\begin{gathered} 1,5,10,15,30,50,100,150,300 \mathrm{~V} \\ 1-5 \mathrm{~V} \text { (zero-suppressed indicator) } \end{gathered}$				5, 10, 30, 50, 100, 150V			
Cover		Black	((
		Special	\triangle				\triangle			
Mounting			(()			
			\bigcirc				\bigcirc			
		ameplat	\triangle				\triangle			
	Tag nu	umber p	\triangle				\triangle			
		Doub	\bigcirc				\bigcirc			
		olored I	\bigcirc				\bigcirc			
Page with specifications table			97				98			

Remarks All indicators, excluding special grade and foreign-standard specification indicators, comply with the Japanese Industrial Standards relating to direct-acting electrical indicators and have the JIS mark.
Note 1. The operating circuit voltage is 300 V or less.
Note 2. Parentheses around an indicator rating indicate that the rating is only available for certain models. Refer to the specifications for details.

Model Naming System

Term	Meaning	Term	ing
Electric indicator (direct-acting indicator)	An indicator with a needle driven by a mechanically coupled movable element.	Intrinsic error	Error of an indicator in a standard state. $\text { Intrinsic error }=\left[\frac{\text { target value }- \text { reference value }}{\text { base value }}\right] \times 100(\%$
Electronic indicator	An indicator that uses an electronic means to measure and display an electrical quantity or non-electrical quantity.	Standard value	A specified standard-error value used to define the accuracy of an indicator. The value varies according to the type of indicator. - For ammeters, voltmeters, wattmeters and varmeters, the standard value is the upper value of the measurement range. (If there are both mechanical and electrical zero points in the scale [i.e., there is a negative and positive range], the standard value is the sum of the absolute values of the electrical quantity corresponding to the two limits of the measurement range.) (If the scale does not match the quantity of the electricity input, the standard value is the span.) Frequency meter The upper value of the measurement range. Power factor meter Electrical angle of 90°.
Fixed indicator (indicator for switchboard)	Indicators that are mounted permanently, connected to an external circuit via fixed conductive wires.		
Portable indicator	An indicator that can be transported and used in different places.		
Wide-angle indicator	An indicator with a scale spanning a range of 180° or more.		
Receiving indicator	Indicators with scales that differ from the quantity of electricity input, but the relationship between the quantity of electricity input and scale values is known.		
Zero-suppressed indicator	An indicator with a mechanical zero point outside the range of the scale.		
Movable coil	An indicator that operates based on the interaction between magnetic fields produced by a fixed, permanent magnet and		
	by	Span	
Movable iron core indicator	Indicators that have fixed and moving cores made of soft magnetic material and operate based on the repulsive force (and suction) generated as a result of magnetizing the fixed and mobile iron cores by passing an electrical current through the fixed coil.		
		Overshoot	The difference between the maximum deflection value and the final value when a measured quantity changes suddenly.
		Response time	When the measurement value changes suddenly from zero to a specified value, the time (seconds) until the needle stops at its final stationary position.
Rectifier indicator	An indicator combining a DC-operated indicator and a rectifier to measure AC current/voltage.		
Transducer indicator	An indicator that converts a quantity of $A C$ electricity to a DC voltage/current using an electronic device or circuit, and then indicates the quantity using a movable coil indicator.	Residual displacement	The deflection of a mechanically controlled movable element still remaining after the cause of the deflection has been eliminated.
Bimetal indicator	Heat-based indicators that operate by changing the shape of the metal elements, which occurs when they are heated directly/indirectly via an electrical current.	Extent of influence	In general, the potential extent of influence that an external factor has on performance (e.g., ambient temperature, external magnetic field).
Compatible accessory	An accessory that has special properties/accuracy itself, regardless of whether or not it is combined with the performance of an indicator.	Distortion rate (total harmonic distortion rate)	Rate: $\frac{\text { Effective value of the harmonics contained }}{\text { Effective value of non-sinusoidal wave }}$
Limited-compatibility accessory	An accessory that has special properties/accuracy itself and can be combined with an indicator that has special performance.	Ripple content	Content: $\frac{\text { Effective value of varying component }}{\text { value of DC component }}$
Dedicated accessory (non-compatible accessory)	An accessory that is adjusted considering the electrical characteristics of the indicator it is combined with.	Standby state	Prior to indicator testing, the specified measurement amount supplied to the circuit being measured.

-Abbreviations for items measured
DA : DC current
DV : DC voltage
AA : AC current
AV $:$ AC voltage
W $:$ Power
VAR $:$ Reactive power
PF $:$ Power factor, phase
F \quad : Frequency
SY $:$ Synchroscope

-Standard value

1) $D A, D V, A A, A V, W, V A R$

The upper limit of the
measurement range; the sum of the absolute values of both sides where there is a zero point on the scale [i.e., there are positive and negative ranges]; the span when the scale does not match the quantity of electricity.

2) F

Upper-limit value of the
measurement range
3) $P F, S Y$
90° electric angle

Excerpts from Japanese standards

(1) JIS C 1102-1~-9

Influencing item		Test conditions	Performance	Type of measured quantity	
		DA, AA, W DV:AV 'VAR F:PF:SY			
Inherent error			Measure important points under standard conditions	$\pm 100 \%$ of the accuracy class	oioioioioio
Ambient temperature		Temperature varies $\pm 10^{\circ} \mathrm{C}$ from standard temperature ($23^{\circ} \mathrm{C}$)	100\% of class index	0,0,0,0,0,0	
Humidity		Leave for 96 hr in states of 25% and 80% relative humidity, respectively	100\% of class index	oioioioioio	
DC measured quantity	Ripple	20% input, and $45-65 \mathrm{~Hz}$ and $90-130 \mathrm{~Hz}$ current (AC) superimposed	50% of class index	0	
AC measured quantity	Distortion	AC, DC, W : 20% third harmonic wave content (W: with each measured circuit) PF, F : 15% third harmonic wave content (PF: with each measured circuit)	100% of class index (rectifying type is exempt)	o:O:O:O:O	
	Frequency	Vary by $\pm 10 \%$ from reference frequency	100\% of class index	0:0: $0: 0$	
	Voltage component	Vary by $\pm 15 \%$ from reference voltage	100\% of class index	:0:0:0:0	
	Current component	Vary by 20 to 120% of rated current	100\% of class index	\bigcirc	
Power factor		Power factor varies from 1 to 0.5 (var: lagging phase angle: 30°)	100\% of class index	\bigcirc	
Phase balance		One current circuit removed	200\% of class index	010	
Interference between multiple phase indicator elements		One voltage circuit removed	200\% of class index	0	
Attitude		Incline of 5° to the front/back/left/right from the standard attitude	50% of class index	0:0:0:0 0 o:o	
External magnetic field		Magnetic field of $0.4 \mathrm{kA} / \mathrm{m}$	Movable iron core: 6%; others: 1.5%	$0: 0: 010: 0: 0$	
Ferromagnetic support		Mounted to a 2 mm -thick steel-plate panel	Within limits of inherent error	0:0:0:0:0:0	
Conductive support		Mounted to a 1.5 mm -thick (or thicker) aluminum panel	Within limits of inherent error	$0,0: 0: 0: 0: 0$	
Damping	Overshoot	Input of approx. $2 / 3$ scale length; measure initial overshoot distance	20\% or less it the full deflection angle is less than 180\%; 25% or less otherwise	$0: 0: 0: 0: 0$	
	Response time	Input of approx. $2 / 3$ scale length; measure time to settle within 1.5%	4 s or less		
Self-heating		Changes at 1 to 3 minutes after and 30 to 35 minutes after applying a 90% input.	100\% of class index	(1)0, 0	
Short-time overload	Power supply circuit Voltage circuit	Apply power 10 -fold that of the rated power nine times for 0.5 s at 60 s intervals and one time for 5 s . Apply voltage double that of the rated voltage nine times for 0.5 s at 60 s intervals and one time for 5 s .	Within limits of inherent error		
Continuous overload	Current circuit Voltage circuit	Apply current 120% that of the rated current for $2 h$ Apply voltage 120% that of the rated voltage for 2 h	Within limits of inherent error	\circ 0 \circ \circ \circ 0 	
Conduction of current circuit after large current overload		Apply current 30 -fold that of the CT nominal secondary current for 2 s (applies to indicators combined with a CT of 1 to 10A)	Current circuit does not open	0 O	
Temperature limit value		$40^{\circ} \mathrm{C}$ for $16 \mathrm{~h},-25^{\circ} \mathrm{C}$ for 8 h (repeated three times)	Within limits of inherent error	$0: 0: 0: 0: 0: 0$	
Deviation from zero point		Measure deviaition atter applying the maximum value of the measurement range for 30 and zero point seting for 155 .	50% of class index	0:0:0:0:0:0	
Mechanical zero-point adjuster		Maximum adjustment value in increasing/decreasing directions	Range: 2% or 2° or more	0:0:010:0:0	
Synchroscope	Drop-out frequency Pull-in frequency Open circuit	Frequency when rotation stops after increasing and then decreasing the starting circuit frequency. Frequency when rotation starts after increasing and then decreasing the starting circuit frequency. Open starting-circuit or operating-circuit side	$\begin{aligned} & \text { For 3-phase: } 1.5 \mathrm{~Hz} \text { or more } \\ & \text { S For 1-phase: } 1 \mathrm{~Hz} \text { or more } \\ & \text { Index indicates synchronization point } \pm 30 \text { externally } \end{aligned}$	\bigcirc	
Vibration/mpact	Vibration Impact	10-65-10Hz, amplitude: 15 mm Sweeping speed: 1 octave/min., No. of sweeps: 5 $490 \mathrm{~m} / \mathrm{s}^{2}$ in $\mathrm{X}-, Y$ - and Z -, forward and reverse directions (repeated three times)	100\% of class index		

(2) JIS C 1010-1 (Measurement Category III, Pollution Degree 2)

			Type of measurement
Test item	Test conditions	Performance/Reference value	$\begin{array}{\|l:l:l\|l\|} \hline \text { DA AA: } & \text { W } & \mathrm{F} & \mathrm{PF} \\ \hline \mathrm{DV} & \mathrm{AV}, \mathrm{VAR} \\ \hline \end{array}$
Voltage test	Between entire measurement circuit and outer casing The test voltage value is defined according to the operating circuit voltage. $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ effective AC voltage, 5 s	Dielectric breakdown and flashover must not occur.	$0: 0: 0: 0: 0$
Clearance and creeping distance	Between an external portion that an operator can touch and an internal circuit that is not insulated from the input. The clearance and creeping distance are defined according to the operating circuit voltage.	Metal and resin connected: basic insulation Ungrounded metal: reinforced insulation or double insulation	

Representative operating circuit voltages and the clearance and creeping distance required

Operating circuit voltage	Standard insulation			Reinforced insulation or double insulation		
	Clearance	Creeping distance	Test voltage value	Clearance	Creeping distance	Test voltage value
100 V	0.5	1.4	840	1.5	2.8	
150 V	1.5	1.57	1390	3.0	3.14	
300 V	3.0	3.0	2210	5.9	6.0	
600 V	5.5	6.0	3320	10.5	12.0	

(3) Reference (JIS C 1102-1: 1997 specified standard)

Test item		Test conditions	Performance/reference value	Type of measurement
				$\begin{array}{\|l:l:l:l:l} \hline \mathrm{DA}: \mathrm{AA}_{1} \mathrm{~W} & \mathrm{FF} \\ \mathrm{DV} & \mathrm{AV}^{\prime} \mathrm{VAR}_{1}^{\prime} & \mathrm{PF} \\ \hline \end{array}$
Insulation test	Note 1	Between entire measurement circuit and outer casing Apply 500VDC and measure	$5 \mathrm{M} \Omega$ or more	: $0: 0$

Note 1. JIS C 1102-1 is not specified in 2007.

Reference Chart for Test Voltages and

Corresponding test voltages according to indicator type

Indicator type			Model name	Operating circuit voltage or maximum rating	Factory-tested voltage	JIS voltage test ${ }^{\text {Note } 2}$	JIS mark indication ${ }^{\text {Not }}$		
DC ammeters			YM-206NDA, YM-208NDA, YM-210NDA	300 V or less	2210V, 5 s	2000V, 1 min	Indicated		
			301V~600V	3320 V , 5 s	2000V, 1 min	Not indicated			
			YM-8NDA, YM-10NDA, YM-12NDA LM-80NDA, LM-110NDA	600 V or less	3320 V , 5s	2000V, 1 min	Indicated		
DC voltmeters				YM-206NDV, YM-208NDV, YM-210NDV	1~300V	$2210 \mathrm{~V}, 5 \mathrm{~s}$	2000V, 1 min	Indicated	
			301V 600 V		3320 V , 5s	2000V, 1 min	Not indicated		
			601V 1000 V		$4300 \mathrm{~V}, 5 \mathrm{~s}$	3000 V , 1 min	Not indicated		
			1001V 1200 V		4950 V , 5 s	5000 V , 1 min	Not indicated		
			1201V 1500 V		$5800 \mathrm{~V}, 5 \mathrm{~s}$	5000 V , 1 min	Not indicated		
			1501V 2000 V		7400 V , 5s	$5000 \mathrm{~V}, 1 \mathrm{~min}$	Not indicated		
			YM-8NDV, YM-10NDV, YM-12NDV LM-80NDV, LM-110NDV	1~600V	$3320 \mathrm{~V}, 5 \mathrm{~s}$	2000V, 1 min	Indicated		
			601V 1000 V	$4300 \mathrm{~V}, 5 \mathrm{~s}$	$3000 \mathrm{~V}, 1 \mathrm{~min}$	Not indicated			
			1001V 1200 V	$4950 \mathrm{~V}, 5 \mathrm{~s}$	$5000 \mathrm{~V}, 1 \mathrm{~min}$	Not indicated			
			1201V 1500 V	$5800 \mathrm{~V}, 5 \mathrm{~s}$	5000 V , 1 min	Not indicated			
			1501V 2000 V	7400 V , 5s	5000 V , 1 min	Not indicated			
AC ammeters		Movable iron core		YS-206NAA, YS-208NAA, YS-210NAA	300 V or less	$2210 \mathrm{~V}, 5 \mathrm{~s}$	2000V, 1 min	Indicated	
		301V~600V			3320 V , 5s	2000V, 1 min	Not indicated		
		Combined with CT			2210V, 5 s	2000V, 1 min	Indicated		
		YS-8NAA, YS-10NAA, YS-12NAA LS-80NAA, LS-110NAA		600 V or less	3320 V , 5 s	2000V, 1 min	Indicated		
		Combined with CT	$2210 \mathrm{~V}, 5 \mathrm{~s}$	2000V, 1 min	Indicated				
		Rectifier	YR-206NAA, YR-208NAA, YR-210NAA	300 V or less	$2210 \mathrm{~V}, 5 \mathrm{~s}$	2000V, 1 min	Indicated		
		301 V -600V		3320 V , 5 s	2000V, 1 min	Not indicated			
		Combined with CT		$2210 \mathrm{~V}, 5 \mathrm{~s}$	2000V, 1 min	Indicated			
		YR-8NAA, YR-10NAA, YR-12NAA LR-80NAA, LR-110NAA	600 V or less	3320 V , 5 s	2000V, 1 min	Indicated			
		Combined with CT	$2210 \mathrm{~V}, 5 \mathrm{~s}$	2000V, 1 min	Indicated				
AC voltmeters			Movable iron core	YS-206NAV, YS-208NAV, YS-210NAV YS-8NAV, YS-10NAV	50~300V	2210V, 5 s	2000V, 1 min	Indicated	
		Combined with VT			$2210 \mathrm{~V}, 5 \mathrm{~s}$	2000 V , 1 min	Indicated		
		YS-12NAV		50~600V	$3320 \mathrm{~V}, 5 \mathrm{~s}$	2000V, 1 min	Indicated		
		Combined with VT		$3320 \mathrm{~V}, 5 \mathrm{~s}$	2000V, 1 min	Indicated			
		LS-80NAV, LS-110NAV		150~600V	$3320 \mathrm{~V}, 5 \mathrm{~s}$	2000V, 1 min	Indicated		
		Combined with VT		3320 V , 5s	2000 V , 1 min	Indicated			
		Rectifier	YR-206NAV, YR-208NAV, YR-210NAV	5~300V	$2210 \mathrm{~V}, 5 \mathrm{~s}$	2000V, 1 min	Indicated		
		301V $\sim 600 \mathrm{~V}$		$3320 \mathrm{~V}, 5 \mathrm{~s}$	2000V, 1 min	Not indicated			
		Combined with VT		$2210 \mathrm{~V}, 5 \mathrm{~s}$	2000V, 1 min	Indicated			
		YR-8NAV, YR-10NAV, YR-12NAV LR-80NAV, LR-110NAV	5~600V	3320 V , 5s	2000V, 1 min	Indicated			
		Combined with VT	$2210 \mathrm{~V}, 5 \mathrm{~s}$	2000V, 1 min	Indicated				
Wattmeters			YP-206NW, YP-208NW, YP-210NW YP-8NW, YP-10NW, YP-12NW LP-80NW, LP-110NW	1P2W: 110~220V	2210V, 5 s	2000V, 1 min	Indicated		
			1P3W: 100/200V	2210V, 5 s	2000V, 1 min	Indicated			
			3P3W: 110~220V	2210 V , 5 s	2000V, 1 min	Indicated			
			3P4W:110/ $\sqrt{3 / 110 \sim 220 / 380 V}$	$2590 \mathrm{~V}, 5 \mathrm{~s}$	2000V, 1 min	Indicated			
Varmeters				YP-206NVAR, YP-208NVARYP-210NVARYP-8NVAR, YP-10NVAR, YP-12NVARLP-80NVAR, LP-110NVAR	3P3W: 110~220V	$2210 \mathrm{~V}, 5 \mathrm{~s}$	2000V, 1 min	Indicated	
			3P4W: 110/ $3 / 110 \sim 110 / 190 \mathrm{~V}$		$2210 \mathrm{~V}, 5 \mathrm{~s}$	2000V, 1 min	Indicated		
Power factor meters				Balanced circuits	YP-206NPF, YP-208NPF, YP-210NPF YP-8NPF, YP-10NPF, YP-12NPF LP-80NPF, LP-110NPF	3P3W: 110~220V	2210 V , 5 s	2000V, 1 min	Indicated
		Unbalanced loads		YP-206NPFU, YP-208NPFUYP-210NPFUYP-8NPFU, YP-10NPFU, YP-12NPFULP-80NPFU, LP-110NPFU	3P3W: 110~220V	$2210 \mathrm{~V}, 5 \mathrm{~s}$	2000V, 1 min	Indicated	
		3P4W: 110/ $\sqrt{3} / 110 \sim 110 / 190 \mathrm{~V}$	$2210 \mathrm{~V}, 5 \mathrm{~s}$		2000V, 1 min	Indicated			
Frequency meters			YP-206NF, YP-208NF, YP-210NF YP-8NF, YP-10NF, YP-12NF LP-80NF, LP-110NF	110~220V	$2210 \mathrm{~V}, 5 \mathrm{~s}$	2000V, 1 min	Indicated		
Receiving indicators	DC input		Current input	YM-206NRI, YM-208NRI, YM-210NRI YM-8NRI, YM-10NRI, YM-12NRI LM-80NRI, LM-110NRI	300 V or less	$2210 \mathrm{~V}, 5 \mathrm{~s}$	2000V, 1 min	Indicated	
		Voltage input	YM-206NRI, YM-208NRI, YM-210NRI YM-8NRI, YM-10NRI, YM-12NRI LM-80NRI, LM-110NRI	1~300V	2210 V , 5 s	2000V, 1 min	Indicated		
	AC input	Current input	YR-206NRI, YR-208NRI, YR-210NRI YR-8NRI, YR-10NRI, YR-12NRI LR-80NRI, LR-110NRI	300 V or less	2210 V , 5 s	2000V, 1 min	Indicated		
		Voltage input	YR-206NRI, YR-208NRI, YR-210NRI YR-8NRI, YR-10NRI, YR-12NRI LR-80NRI, LR-110NRI	5~300V	$2210 \mathrm{~V}, 5 \mathrm{~s}$	2000V, 1 min	Indicated		

Indicator type			Model name	Operating circuit voltage or maximum rating		Factory-tested 1 voltage	JIS voltage test ${ }^{\text {Note } 2}$	JIS mark indication		
Indicators with changeover switches		AC ammeters	YR-8UNAA, YR-10UNAA, YR-12UNAA	600 V or less		3320 V , 5 s	2000V, 1 min	Indicated		
		AC voltmeters	YR-8UNAV, YR-10UNAV, YR-12UNAV	150~600V		3320 V , 5s	2000V, 1 min	Indicated		
Demand meters		AC ammeters	LB-8ZNAA	150 V	or less	$2210 \mathrm{~V}, 5 \mathrm{~s}$	$2000 \mathrm{~V}, 1 \mathrm{~min}$	Not indicated		
		LB-11ZNAA, LB-11ZRNAA	300 V or less		2210V, 5 s	$2000 \mathrm{~V}, 1 \mathrm{~min}$	Indicated			
		AC voltmeters	LB-8ZNAV	150 V		2210V, 5 s	2000V, 1 min	Not indicated		
		LB-11ZNAV, LB-11YRNAV	150 V		2210V, 5 s	2000V, 1 min	Indicated			
		Wattmeters	LB-11ZNW, LB-11ZRNW, LB-11YNW LB-11YRNW	1P2W: 110~200V		2210V, 5 s	2000V, 1 min	Indicated		
		3P3W: 110~220V		2210V, 5 s	2000V, 1 min	Indicated				
		3P4W:110/ $\sqrt{3} / 110 \sim 220 / 380 \mathrm{~V}$		2590V, 5 s	2000V, 1 min	Indicated				
		Receiving indicators	LB-11ZNRI, LB-11ZRNRI, LB-11YNRI LB-11YRNRI	300 V or less		2210V, 5 s	2000V, 1 min	Indicated		
Demand meter relays			AC ammeters	LB-11ZRMNAA	300 V or less		2210V, 5 s	2000V, 1 min	Not indicated	
DC ammeters			YM-210MRNDA, YM-210MRHNDA LM-11MRNDA, LM-11MRHNDA	300 V or less	Exterior	2210V, 5 s	2000V, 1 min	Not indicated		
			Between input and output		$1200 \mathrm{~V}, 1 \mathrm{~min}$	$1200 \mathrm{~V}, 1 \mathrm{~min}$				
Meter relays	DC voltmeters			YM-210MRNDV, YM-210MRHNDV LM-11MRNDV, LM-11MRHNDV	1~300V	Exterior	$2210 \mathrm{~V}, 5 \mathrm{~s}$	2000V, 1 min	Not indicated	
				Between input and output		1200 V , 1 min	$1200 \mathrm{~V}, 1 \mathrm{~min}$			
			301~500V		Exterior	$3110 \mathrm{~V}, 5 \mathrm{~s}$	2000V, 1 min	Not indicated		
			Between input and output		$1200 \mathrm{~V}, 1 \mathrm{~min}$	$1200 \mathrm{~V}, 1 \mathrm{~min}$				
	AC ammeters				YR-210MRNAA, YR-210MRHNAA	300 V or less	Exterior	$2210 \mathrm{~V}, 5 \mathrm{~s}$	2000V, 1 min	Not indicated
			LR-11MRNAA, LR-11MRHNAA	Between input and output	1200 V , 1 min		1200 V , 1 min			
	AC voltmeters		YR-210MRNAV, YR-210MRHNAV	10~300V	Exterior	2210V, 5 s	2000V, 1 min	Not indicated		
			LR-11MRNAV, LR-11MRHNAV		Between input and output	1200 V , 1 min	1200 V , 1 min			
	Wattmeters		YM-210MRNW, YM-210MRHNW LM-11MRNW, LM-11MRHNW	1P2W: 110~220V	Exterior	$2210 \mathrm{~V}, 5 \mathrm{~s}$	2000V, 1 min	Not indicated		
			Between input and output		$1200 \mathrm{~V}, 1 \mathrm{~min}$	$1200 \mathrm{~V}, 1 \mathrm{~min}$				
			3P3W: 110~220V	Exterior	2210 V , 5 s	2000V, 1 min	Not indicated			
			Between input and output	$1200 \mathrm{~V}, 1 \mathrm{~min}$	1200 V , 1 min					
			$\begin{gathered} 3 \mathrm{P} 4 \mathrm{~W}: 110 / \sqrt{3} / 110 \\ \sim 220 / 380 \mathrm{~V} \end{gathered}$	Exterior	2590V, 5s	2000V, 1 min	Not indicated			
			Between input and output	$1200 \mathrm{~V}, 1 \mathrm{~min}$	1200 V , 1 min					
	Varmeters			YM-210MRNVAR, YM-210MRHNVAR LM-11MRNVAR, LM-11MRHNVAR	3P3W: 110~220V	Exterior	2210 V , 5s	$2000 \mathrm{~V}, 1 \mathrm{~min}$	Not indicated	
			Between input and output			$1200 \mathrm{~V}, 1 \mathrm{~min}$	$1200 \mathrm{~V}, 1 \mathrm{~min}$			
			$\begin{array}{c\|} \hline 3 P 4 W: 110 / \sqrt{3} / 110 \\ \sim 110 / 190 \mathrm{~V} \end{array}$		Exterior	2210V, 5 s	2000V, 1 min	Not indicated		
			Between input and output		1200V, 1 min	1200V, 1 min				
	Power factor meters			YM-210MRNPF, YM-210MRHNPF LM-11MRNPF, LM-11MRHNPF YM-210MRNPFU, YM-210MRHNPFU LM-11MRNPFU, LM-11MRHNPFU	3P3W: 110~220V	Exterior	2210V, 5 s	2000V, 1 min	Not indicated	
			Between input and output			1200V, 1 min	1200V, 1 min			
			YM-210MRNPFU, YM-210MRHNPFU LM-11MRNPFU, LM-11MRHNPFU	$\begin{gathered} 3 \mathrm{P} 4 \mathrm{~W}: 110 / \sqrt{3} / 110 \\ \sim 110 / 190 \mathrm{~V} \end{gathered}$	Exterior	2210V, 5 s	2000V, 1 min	Not indicated		
			Between input and output		$1200 \mathrm{~V}, 1 \mathrm{~min}$	$1200 \mathrm{~V}, 1 \mathrm{~min}$				
	Frequency meters			YM-210MRNF, YM-210MRHNF LM-11MRNF, LM-11MRHNF	110~220V	Exterior	$2210 \mathrm{~V}, 5 \mathrm{~s}$	2000V, 1 min	Not indicated	
			Between input and output			1200 V , 1 min	1200 V , 1 min			
	Receiving indicators	Power supply input	YM-210MRNRI, YM-210MRHNRI LM-11MRNRI, LM-11MRHNRI	300 V or less	Exterior	2210 V , 5 s	2000V, 1 min	Not indicated		
					Between input and output	$1200 \mathrm{~V}, 1 \mathrm{~min}$	$1200 \mathrm{~V}, 1 \mathrm{~min}$			
		Voltage input	YM-210MRNRI, YM-210MRHNRI LM-11MRNRI, LM-11MRHNRI	1~300V	Exterior	$2210 \mathrm{~V}, 5 \mathrm{~s}$	2000V, 1 min	Not indicated		
					Between input and output	1200 V , 1 min	1200 V , 1 min			
Indicators with maximum and minimum needles		DC ammeters	LM-11ZNDA, LM-11YNDA	300 V or less		2210 V , 5s	2000V, 1 min	Not indicated		
		AC ammeters	LM-11ZNAA, LM-11YNAA	300 V or less		2210V, 5 s	$2000 \mathrm{~V}, 1 \mathrm{~min}$	Not indicated		
		AC Voltmeters	LM-11ZNAV, LM-11YNAV	100~300V		2210V, 5 s	2000 V , 1 min	Not indicated		
		Receiving indicators	LM-11ZNRI, LM-11YNRI	300 V or less		2210V, 5 s	2000V, 1 min	Not indicated		
Earth-leakage detectors			LM-11NGD	63.5~150V		2210 V , 5 s	2000V, 1 min	Not indicated		
Synchroscopes			LI-11NSY	110~220V		2210V, 5 s	$2000 \mathrm{~V}, 1 \mathrm{~min}$	Indicated		
Dual-element indicators			LM-11NE	10 V or less	Exterior	$2210 \mathrm{~V}, 5 \mathrm{~s}$	2000V, 1 min	Indicated		
			Between terminals		$50 \mathrm{~V}, 1 \mathrm{~min}$	$50 \mathrm{~V}, 1 \mathrm{~min}$				
Bar-shaped indicators	DC indicators	Current input		FM-210SN, FM-213SN, FM-215SN FM-217SN	300 V or less		2210V, 5 s	2000V, 1min	Indicated	
			FM-210DN, FM-213DN, FM-215DN	10 V or less	Exterior	2210V, 5 s	2000V, 1min	Indicated		
			FM-217DN	10V orless	Between terminals	$500 \mathrm{~V}, 1 \mathrm{~min}$	$500 \mathrm{~V}, 1 \mathrm{~min}$			
		Voltage input	FM-210SN, FM-213SN, FM-215SN FM-217SN	1~300V		2210V, 5 s	2000V, 1min	Indicated		
			FM-210DN, FM-213DN, FM-215DN	1~10V	Exterior	2210 V , 5 s	$2000 \mathrm{~V}, 1 \mathrm{~min}$	Indicated		
			FM-217DN		Between terminals	$500 \mathrm{~V}, 1 \mathrm{~min}$	$500 \mathrm{~V}, 1 \mathrm{~min}$			
	$A C$ indicators	Current input	FR-210SN, FR-213SN, FR-215SN FR-217SN	300 V or less		2210V, 5 s	2000V, 1min	Indicated		
		Voltage input	$\begin{aligned} & \text { FR-210SN, FR-213SN, FR-215SN } \\ & \text { FR-217SN } \end{aligned}$	5~300V		2210V, 5 s	2000V, 1 min	Indicated		

Note 1. The factory-tested voltages are the values for the voltage test at the time of shipment. (The test may be performed at a value higher than the standard value.)
Note 2. Values in JIS C 1102-1 to 7 (1997 version).
Note 3. In some cases, special specification models (special grade, foreign standards) may not have a JIS mark.
Note 4. Models shown in shaded areas do not have the JIS mark.

Mechanical Indicators

\square Common Specifications

Common standard specifications

Standards	Direct-acting electrical indicators JIS C 1102-2, JIS C 1102-3, JIS C 1102-4, JIS C 1102-5, JIS C 1102-7
Accuracy (grade)	Class 1.5 or 2.5 (frequency meters: class 0.5 or 1; power factor meters: class 5, synchroscope: class 5)
Usage temperature range	$-5^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ (reference temperature: $23^{\circ} \mathrm{C}$)
Usage humidity range	At a relative humidity of 30% to 70%, there are no adverse effects on indications.
Mounting attitude	Vertical (the scale plate is vertical with respect to a horizontal surface)
Scale plate	Background color: white
Cover	Acrylic resin (with antistatic treatment applied)
Case	Steel plate or molded product
Input signal peak-to-rms ratio	Sine wave ($\sqrt{2}$)
Measurement category	CATIII (category of measurement performed inside a building facility)
Operating environment pollution rating	2 (non-conductive pollution only)
Installation altitude	$2,000 \mathrm{~m}$ or less
Usage location	Indoors
Mounting panel	Metal panel
Voltage test	Rated voltage $300 \mathrm{~V}: 2210 \mathrm{~V}$ for 5 s ; rated voltage $600 \mathrm{~V}: 3320 \mathrm{~V}$ for $5 \mathrm{~s}^{\text {Note } 1}$ (between electrical circuit and outer casing)
Insulation test	$10 \mathrm{M} \Omega$ or more at a test voltage of 500 V (between electrical circuit and outer casing)
Storage temperature	$-20^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$

Note 1. Refer to the Reference Chart for Test Voltages and JIS Mark on p. $25 / 26$ for information regarding the circuit voltage ranges of respective models and applicable voltage test values.

Covers

Cover specification	Classificaion	Y -2N Series	$Y-\mathrm{N}$ Series	L-N Series
B design cover (Munsell N 1.5 semi-gloss)	\bigcirc			
G design cover (all transparent)	\bigcirc			-
F design cover Note 1 (special color coating)	\triangle			
Cover with red needle $\left(\begin{array}{l} \text { can be } \\ \text { manufactured for } B, \\ G, \text { and } F \text { designs } \end{array}\right)$	\bigcirc			

Remarks The B design cover is standard specification. The G and F design covers and covers with red needles can be manufactured if required.
Note 1. When ordering the F-design cover, please use F as the cover code and specify the color coating. Munsell 7.5BG 4/1.5 will be used for orders with no color coating specified.

- Cover codes

Cover specifications	Without red needle	With red needle
B design	B	$\mathrm{BR}^{*} 1$
G design	G	GR
F design	F	FR

Remarks For the Y-N Series, a B cover with two red needles (BRR cover) can be manufactured depending on the model (please inquire for details).

- Accessories

Nuts for mounting screws are provided with all models. T-150 and other special accessories are indicated in the specification columns of the respective indicator types.

Mechanical Indicators

Common Specifications

Scale plate components and items indicated

Scale plate indications

The following tables show the scales, including numerals, colored lines, bands and colors, used as standard specifications. Red, blue, green and yellow are used for the colored lines/bands.

\bigcirc	Y-2N Series	Y-N Series	L-N Series
Standard scale	$0^{2} \backslash 1^{4}, 1^{6}, 1_{0}^{8}$		
Expanded scale (expanded by 3 times)			
Positive/ Negative scale	2^{0}		
Single scale with double stamp			
Double scale with double stamp			
Colored lines Colored bands			

Remarks (1) See the "Standard Scale Diagrams" on pp. 31 to 34 regarding the scale division with respect to the maximum scale value.
(2) Special scales can also be manufactured.

\square Standard Scale Diagrams

1a. Y-206N ordinary scale indicators
1b. Y-206N expanded scale indicators

Remarks The ranges underlined in the Scale specification column of the table above are omitted for indicators where the interval between scale marks are very small close to the zero point (e.g., an indicator with a movable iron core).

2a. Y-208N and Y-210N ordinary scale indicators
2b. Y-208N and Y-210N expanded scale indicators

$\begin{array}{\|c\|} \hline \text { Maximum } \\ \text { scale } \\ \text { value } \\ \hline \end{array}$	Scale specification	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { divisions } \end{gathered}$	Single space reading	Maximum scale value	Scale specification		$\begin{array}{\|c\|} \hline \text { Number } \\ \text { of } \\ \text { divisions } \end{array}$	Single space reading
$\begin{array}{r} 1 \\ 10 \\ 100 \\ 1000 \\ \hline \end{array}$		20	$\begin{aligned} & 0.05 \\ & 0.5 \\ & 5 \\ & 50 \end{aligned}$	$\begin{array}{r} 1 \\ 10 \\ 100 \\ 1000 \\ \hline \end{array}$	\mathbf{l}^{0}	$\begin{array}{cc} 20 & 30 \\ \text { I } & \text { I } \end{array}$	20	$\begin{aligned} & 0.05 \\ & 0.5 \\ & 5 \\ & 50 \end{aligned}$
$\begin{array}{r} 1.2 \\ 12 \\ 120 \\ 1200 \\ \hline \end{array}$	$\left.\begin{aligned} & 0 \\ & l \mid \\ & \mid \\ & l \end{aligned} \right\rvert\,$	24	$\begin{gathered} 0.05 \\ 0.5 \\ 5 \\ 50 \\ \hline \end{gathered}$	$\begin{array}{r} 1.2 \\ 12 \\ 120 \\ 1200 \\ \hline \end{array}$		$\begin{array}{cc} 24 & 36 \\ \text { \| } & \text { I } \end{array}$	24	$\begin{aligned} & 0.05 \\ & 0.5 \\ & 50 \\ & 50 \\ & \hline \end{aligned}$
$\begin{array}{r} 1.5 \\ 15 \\ 150 \\ 1500 \\ \hline \end{array}$		15	$\begin{array}{r} 0.1 \\ 1 \\ 10 \\ 100 \\ \hline \end{array}$	$\begin{array}{r} 1.5 \\ 15 \\ 150 \\ 1500 \\ \hline \end{array}$		$\begin{array}{cc} 30 & 45 \\ \text { \| } & \text { I } \end{array}$	15	$\begin{array}{r} 0.1 \\ 1 \\ 10 \\ 100 \\ \hline \end{array}$
$\begin{array}{r} 2 \\ 20 \\ 200 \\ 2000 \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & \mathbf{l} \\ & \mathbf{l} \end{aligned} \mathbf{1}$	20	$\begin{array}{r} 0.1 \\ 1 \\ 10 \\ 100 \end{array}$	$\begin{array}{r} 2 \\ 20 \\ 200 \\ 2000 \\ \hline \end{array}$		$\begin{array}{cc} 40 & 60 \\ \text { \| } & \text { I } \end{array}$	20	$\begin{array}{r} 0.1 \\ 1 \\ 10 \\ 100 \\ \hline \end{array}$
$\begin{array}{r} 2.5 \\ 25 \\ 250 \\ 2500 \\ \hline \end{array}$		25	$\begin{array}{r} 0.1 \\ 1 \\ 10 \\ 100 \\ \hline \end{array}$	$\begin{array}{r} 2.5 \\ 25 \\ 250 \\ 2500 \\ \hline \end{array}$		$\begin{array}{cc} 50 & 75 \\ \text { I } & \text { I } \end{array}$	25	$\begin{array}{r} 0.1 \\ 1 \\ 10 \\ 100 \\ \hline \end{array}$
$\begin{array}{r} 3 \\ 30 \\ 300 \\ 3000 \\ \hline \end{array}$		30	$\begin{array}{r} 0.1 \\ 1 \\ 10 \\ 100 \\ \hline \end{array}$	$\begin{array}{r} 3 \\ 30 \\ 300 \\ 3000 \\ \hline \end{array}$	l	$\begin{array}{cc} 60 & 90 \\ \text { \| } & \text { I } \end{array}$	15	$\begin{array}{r} 0.2 \\ 2 \\ 20 \\ 200 \\ \hline \end{array}$
4 40 400 4000		20	$\begin{array}{r} 0.2 \\ 2 \\ 20 \\ 200 \\ \hline \end{array}$	$\begin{array}{r} 4 \\ 40 \\ 400 \\ 4000 \\ \hline \end{array}$		$\begin{array}{cc} 80 & 120 \\ \text { \| } & \text { \| } \end{array}$	20	$\begin{array}{r} 0.2 \\ 2 \\ 20 \\ 200 \\ \hline \end{array}$
$\begin{array}{r} 4.5 \\ 45 \\ 450 \\ 4500 \\ \hline \end{array}$		22.5	$\begin{array}{r} 0.2 \\ 20 \\ 20 \\ 200 \\ \hline \end{array}$	-			-	-
5 50 500 5000		25	$\begin{array}{r} 0.2 \\ 20 \\ 20 \\ 200 \\ \hline \end{array}$	$\begin{array}{r} 5 \\ 50 \\ 500 \\ 5000 \\ \hline \end{array}$		$\begin{array}{cc} 100 & 150 \\ \text { \| } & \text { \| } \end{array}$	25	$\begin{array}{r} 0.2 \\ 2 \\ 20 \\ 200 \\ \hline \end{array}$
6 60 600 6000		30	$\begin{array}{r} 0.2 \\ 20 \\ 200 \\ 200 \\ \hline \end{array}$	$\begin{array}{r} 6 \\ 60 \\ 600 \\ 6000 \\ \hline \end{array}$	\|	$\begin{array}{cc} 120 & 180 \\ \text { \| } \end{array}$	12	0.5 5 50 500
$\begin{array}{r} 7.5 \\ 75 \\ 750 \\ 7500 \\ \hline \end{array}$		15	$\begin{array}{r} 0.5 \\ 50 \\ 50 \\ 500 \\ \hline \end{array}$	$\begin{array}{r} 7.5 \\ 75 \\ 750 \\ 7500 \\ \hline \end{array}$		$\begin{array}{cc} 150 & 225 \\ \text { \| \| } \end{array}$	15	$\begin{array}{r} 0.5 \\ 5 \\ 50 \\ 500 \\ \hline \end{array}$
$\begin{array}{r} 80 \\ 800 \\ 8000 \\ \hline 8000 \\ \hline \end{array}$		16	$\begin{gathered} 0.5 \\ 5 \\ 50 \\ 500 \end{gathered}$	$\begin{array}{r} 80 \\ 80 \\ 800 \\ 8000 \\ \hline \end{array}$		$\begin{array}{cc} 160 & 240 \\ \text { \| \| } \end{array}$	16	$\begin{array}{r} 0.5 \\ 50 \\ 50 \\ 500 \\ \hline \end{array}$
$\begin{array}{r} 9 \\ 90 \\ 900 \\ 9000 \\ \hline \end{array}$		18	$\begin{array}{r} 0.5 \\ 5 \\ 50 \\ 500 \\ \hline \end{array}$	$\begin{array}{r} 9 \\ 90 \\ 900 \\ 9000 \\ \hline \end{array}$	${ }^{0}$	$\begin{array}{cc} 180 & 270 \\ \text { I } & \text { I } \\ \hline \end{array}$	18	$\begin{array}{r} 0.5 \\ 5 \\ 50 \\ 500 \\ \hline \end{array}$

Remarks The ranges underlined in the Scale specification column of the table above are omitted for indicators where the interval between scale marks are very small close to the zero point (e.g., an indicator with a movable iron core).

3a. Y-8N and Y-10N ordinary scale indicators
3b. $\mathrm{Y}-8 \mathrm{~N}$ and $\mathrm{Y}-10 \mathrm{~N}$ expanded scale indicators

Remarks The ranges underlined in the Scale specification column of the table above are omitted for indicators where the interval between scale marks are very small close to the zero point (e.g., an indicator with a movable iron core).

4a. Y-12N ordinary scale indicators
4b. Y-12N expanded scale indicators

Maximum scale value	Scale specification		Single space reading	$\begin{array}{\|c\|} \hline \text { Maximum } \\ \text { scale } \\ \text { value } \end{array}$	Scale specification			Single space reading
$\begin{array}{r} 1 \\ 10 \\ 100 \\ 1000 \\ \hline \end{array}$		50	$\begin{gathered} 0.02 \\ 0.2 \\ 2 \\ 20 \\ \hline \end{gathered}$	$\begin{array}{r} 1 \\ 10 \\ 100 \\ 1000 \\ \hline \end{array}$		$\begin{array}{cc} 20 & 30 \\ \hline \end{array}$	20	$\begin{aligned} & 0.05 \\ & 0.5 \\ & 5 \\ & 50 \end{aligned}$
$\begin{array}{r} 1.2 \\ 12 \\ 120 \\ 1200 \\ \hline \end{array}$		24	$\begin{gathered} 0.05 \\ 0.5 \\ 5 \\ 50 \\ \hline \end{gathered}$	$\begin{array}{r} 1.2 \\ 120 \\ 1200 \\ \hline \end{array}$		$\stackrel{24 \quad 36}{1 \quad 1}$	24	$\begin{gathered} 0.05 \\ 0.5 \\ 5 \\ 50 \\ \hline \end{gathered}$
$\begin{array}{r} 1.5 \\ 15 \\ 150 \\ 1500 \\ \hline \end{array}$		30	$\begin{aligned} & 0.05 \\ & 0.5 \\ & 5 \\ & 50 \end{aligned}$	$\begin{array}{r} 1.5 \\ 15 \\ 150 \\ 1500 \\ \hline \end{array}$		$\begin{aligned} & 30 \quad 45 \\ & \hline 1 \end{aligned}$	15	$\begin{array}{r} 0.1 \\ 1 \\ 10 \\ 100 \\ \hline \end{array}$
$\begin{array}{r} 2 \\ 20 \\ 200 \\ 2000 \\ \hline \end{array}$		40	$\begin{aligned} & 0.05 \\ & 0.5 \\ & 5 \\ & 50 \end{aligned}$	$\begin{array}{r} 2 \\ 20 \\ 200 \\ 2000 \\ \hline \end{array}$		$\stackrel{40}{40} 90$	20	$\begin{array}{r} 0.1 \\ 1 \\ 10 \\ 100 \\ \hline \end{array}$
$\begin{array}{r} 2.5 \\ 25 \\ 250 \\ 2500 \\ \hline \end{array}$		25	$\begin{array}{r} 0.1 \\ 1 \\ 10 \\ 100 \\ \hline \end{array}$	$\begin{array}{r} 2.5 \\ 25 \\ 250 \\ 2500 \\ \hline \end{array}$		$\begin{array}{ll} 50 \quad 75 \\ 1 & 1 \end{array}$	25	$\begin{array}{r} 0.1 \\ 1 \\ 10 \\ 100 \\ \hline \end{array}$
$\begin{array}{r} 3 \\ 30 \\ 300 \\ 3000 \\ \hline \end{array}$		30	$\begin{array}{r} 0.1 \\ 1 \\ 10 \\ 100 \\ \hline \end{array}$	$\begin{array}{r} 3 \\ 30 \\ 300 \\ 3000 \\ \hline \end{array}$		$\begin{array}{cc} 60 \quad 90 \\ \hline 1 \end{array}$	15	$\begin{array}{r} 0.2 \\ 20 \\ 200 \\ 200 \\ \hline \end{array}$
$\begin{array}{r} 4 \\ 40 \\ 400 \\ 4000 \\ \hline \end{array}$	$\stackrel{10}{0}{ }_{\square}^{10}{ }^{20} \quad 30 \quad 40$	40	$\begin{array}{r} 0.1 \\ 1 \\ 10 \\ 100 \\ \hline \end{array}$	$\begin{array}{r} 4 \\ 40 \\ 400 \\ 4000 \\ \hline \end{array}$		$\stackrel{80}{80 \quad 120}$	20	$\begin{array}{r} 0.2 \\ 2 \\ 20 \\ 200 \\ \hline \end{array}$
$\begin{array}{r} 4.5 \\ 45 \\ 450 \\ 4500 \\ \hline \end{array}$		45	$\begin{array}{r} 0.1 \\ 1 \\ 10 \\ 100 \\ \hline \end{array}$	-			-	-
$\begin{array}{r} 5 \\ 50 \\ 500 \\ 5000 \\ \hline \end{array}$		50	$\begin{array}{r} 0.1 \\ 1 \\ 10 \\ 100 \\ \hline \end{array}$	$\begin{array}{r} 5 \\ 50 \\ 500 \\ 5000 \\ \hline \end{array}$		$\stackrel{100 \quad 150}{\square}$	25	$\begin{array}{r} 0.2 \\ 2 \\ 20 \\ 200 \\ \hline \end{array}$
$\begin{array}{r} 6 \\ 60 \\ 600 \\ 6000 \\ \hline \end{array}$		30	$\begin{array}{r} 0.2 \\ 2 \\ 20 \\ 200 \\ \hline \end{array}$	$\begin{array}{r} 6 \\ 60 \\ 600 \\ 6000 \\ \hline \end{array}$		$\stackrel{120 \quad 180}{120}$	30	$\begin{gathered} 0.2 \\ 2 \\ 20 \\ 200 \end{gathered}$
$\begin{array}{r} 7.5 \\ 75 \\ 750 \\ 7500 \\ \hline \end{array}$		37.5	$\begin{array}{r} 0.2 \\ 2 \\ 20 \\ 200 \\ \hline \end{array}$	$\begin{array}{r} 7.5 \\ 75 \\ 750 \\ 7500 \\ \hline \end{array}$		$\stackrel{150225}{150}$	15	$\begin{array}{r} 0.5 \\ 5 \\ 50 \\ 500 \\ \hline \end{array}$
$\begin{array}{r} 8 \\ 80 \\ 800 \\ 8000 \\ \hline \end{array}$		40	$\begin{array}{r} 0.2 \\ 2 \\ 20 \\ 200 \\ \hline \end{array}$	$\begin{array}{r} 8 \\ 80 \\ 800 \\ 8000 \\ \hline \end{array}$		$\stackrel{160240}{1}$	16	$\begin{gathered} 0.5 \\ 5 \\ 50 \\ 500 \\ \hline \end{gathered}$
$\begin{array}{r} 9 \\ 90 \\ 900 \\ 9000 \\ \hline \end{array}$		45	$\begin{array}{r} 0.2 \\ 2 \\ 20 \\ 200 \\ \hline \end{array}$	$\begin{array}{r} 9 \\ 90 \\ 900 \\ 9000 \\ \hline \end{array}$		$\begin{gathered} 180270 \\ \square \end{gathered}$	18	$\begin{array}{r} 0.5 \\ 5 \\ 50 \\ 500 \\ \hline \end{array}$

Remarks The ranges underlined in the Scale specification column of the table above are omitted for indicators where the interval between scale marks are very small close to the zero point (e.g., an indicator with a movable iron core).

Standard Scale Diagrams

5a. L-110N ordinary scale indicators
5b. L-110N expanded scale indicators

$\begin{gathered} \hline \text { Maximum } \\ \text { scale } \\ \text { value } \end{gathered}$	Scale specification	$\begin{array}{c}\text { Number } \\ \text { of } \\ \text { divisions }\end{array}$	$\begin{gathered} \text { Single } \\ \text { space } \\ \text { reading } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Maximum } \\ \text { scale } \\ \text { value } \end{array}$	Scale specification		Number of divisions	$\begin{gathered} \text { Single } \\ \text { space } \\ \text { reading } \end{gathered}$
$\begin{array}{r} 1 \\ 10 \\ 100 \\ 1000 \\ \hline \end{array}$	لسسلس 10	50	$\begin{array}{r} 0.02 \\ 0.22 \\ 20 \\ \hline 20 \\ \hline \end{array}$	$\begin{array}{r} 1 \\ 10 \\ 100 \\ \hline \end{array}$	$\underset{0}{\square-10}$	$\frac{1}{20} \quad 30$	20	$\begin{aligned} & 0.05 \\ & 0.5 \\ & 50 \\ & 50 \\ & \hline \end{aligned}$
$\begin{array}{r} 1.2 \\ 120 \\ 1200 \\ \hline \end{array}$	$\underset{0}{\square+1}$	24	$\begin{gathered} 0.05 \\ 0.5 \\ 5 \\ 50 \\ \hline \end{gathered}$	$\begin{array}{r} 1.2 \\ 120 \\ 1200 \\ \hline \end{array}$	$\underset{0}{\mathrm{Lu}} \stackrel{-12}{\boldsymbol{L}}$	$\begin{array}{ll} 1 & 1 \\ 24 & 36 \end{array}$	24	0.05 0.5 50 50
$\begin{array}{r} 1.5 \\ 15 \\ 150 \\ 1500 \\ \hline \end{array}$		30	$\begin{gathered} 0.05 \\ 0.5 \\ 50 \\ 50 \\ \hline \end{gathered}$	$\begin{array}{r} 1.5 \\ 15 \\ 150 \\ 1500 \\ \hline \end{array}$		$\begin{array}{ll} 1 & 1 \\ 30 & 45 \end{array}$	30	0.05 0.5 50 50
$\begin{array}{r} 20 \\ 200 \\ 2000 \\ \hline \end{array}$		40	$\begin{gathered} 0.05 \\ 0.5 \\ 50 \\ 50 \\ \hline \end{gathered}$	$\begin{array}{r} 20 \\ 200 \\ 2000 \\ \hline \end{array}$		$\frac{1}{40} \quad 1$	40	$\begin{gathered} 0.05 \\ 0.5 \\ 50 \\ 50 \\ \hline \end{gathered}$
$\begin{array}{r} 2.5 \\ 255 \\ 2500 \\ 2500 \\ \hline \end{array}$		25	$\begin{array}{r} 0.1 \\ 1 \\ 10 \\ 100 \\ \hline \end{array}$	$\begin{array}{r} 2.5 \\ 255 \\ 2500 \\ 2500 \\ \hline \end{array}$		$\frac{1}{50} \quad \frac{75}{}$	25	$\begin{array}{r} 0.1 \\ 1 \\ 10 \\ 100 \\ \hline \end{array}$
$\begin{array}{r} 3 \\ 30 \\ 300 \\ 3000 \\ \hline \end{array}$	$\underset{0}{\stackrel{\square}{\text { Lெ }}}$	30	$\begin{array}{r} 0.1 \\ 1 \\ 10 \\ 100 \\ \hline \end{array}$	$\begin{array}{r} 3 \\ 30 \\ 300 \\ 3000 \\ \hline \end{array}$	ال\|	$\frac{1}{60} 90$	30	$\begin{array}{r} 0.1 \\ 1 \\ 10 \\ 100 \\ \hline \end{array}$
$\begin{array}{r} 4 \\ 40 \\ 400 \\ 4000 \\ \hline \end{array}$		40	$\begin{array}{r} 0.1 \\ 1 \\ 10 \\ 100 \\ \hline \end{array}$	$\begin{array}{r} 4 \\ 40 \\ 400 \\ 4000 \\ \hline \end{array}$	$\underset{0}{\square}$	$\frac{1}{80} 120$	20	$\begin{array}{r} 0.2 \\ 2 \\ 20 \\ 200 \\ \hline \end{array}$
$\begin{array}{r} 4.5 \\ 450 \\ 4500 \\ 4500 \end{array}$		45	$\begin{array}{r} 0.1 \\ 1 \\ 10 \\ 100 \\ \hline \end{array}$	-			-	-
$\begin{array}{r} 5 \\ 50 \\ 500 \\ 5000 \\ \hline \end{array}$		50	$\begin{array}{r} 0.1 \\ 1 \\ 10 \\ 100 \\ \hline \end{array}$	$\begin{array}{r} 5 \\ 50 \\ 500 \\ 5000 \\ \hline \end{array}$		$\frac{1}{100 \quad 150}$	25	$\begin{array}{r} 0.2 \\ 20 \\ 200 \\ \hline 200 \\ \hline \end{array}$
$\begin{array}{r} 6 \\ 60 \\ 600 \\ 6000 \\ \hline \end{array}$	し	30	$\begin{array}{r} 0.2 \\ 2 \\ 20 \\ 200 \\ \hline \end{array}$	$\begin{array}{r} 6 \\ 60 \\ 600 \\ 6000 \\ \hline \end{array}$		$\frac{1}{120 \quad 180}$	30	$\begin{array}{r} 0.2 \\ 20 \\ 200 \\ 200 \\ \hline \end{array}$
$\begin{array}{r} 7.5 \\ 755 \\ 7500 \\ 7500 \\ \hline \end{array}$		37.5	$\begin{array}{r} 0.2 \\ 22^{20} \\ 200 \\ \hline \end{array}$	$\begin{array}{r} 7.5 \\ 750 \\ 7500 \\ 7500 \end{array}$		$\frac{1}{150 \quad 225}$	15	$\begin{gathered} 0.5 \\ 5 \\ 50 \\ 500 \\ \hline \end{gathered}$
$\begin{array}{r} 88 \\ 80 \\ 8000 \\ \hline 8000 \end{array}$	${ }_{0}^{\text {لس }}$	40	$\begin{array}{r} 0.2 \\ 2 \\ 20 \\ 200 \\ \hline \end{array}$	$\begin{array}{r} 88 \\ 80 \\ 800 \\ 8000 \\ \hline \end{array}$		$\frac{1}{160 \quad 240}$	40	$\begin{array}{r} 0.2 \\ 2 \\ 20 \\ 200 \\ \hline \end{array}$
$\begin{array}{r} 99 \\ 900 \\ 9000 \\ \hline \end{array}$		45	$\begin{array}{r} 0.2 \\ 20 \\ 200 \\ \hline 200 \\ \hline \end{array}$	$\begin{array}{r} 99 \\ 990 \\ 9000 \\ \hline \end{array}$	$\underset{0}{\mathrm{LHLH}} \underset{30}{\text { U }}$	$\underset{180}{1} \underset{270}{\text { \| }}$	18	$\begin{array}{r} 0.5 \\ 50 \\ 500 \\ \hline 50 \\ \hline \end{array}$

Remarks The ranges underlined in the Scale specification column of the table above are omitted for indicators where the interval between scale marks are very small close to the zero point (e.g., an indicator with a movable iron core).

6a. L-80N ordinary scale indicators
6b. L-80N expanded scale indicators

Maximum scale value	Scale specification		Single space reading	Maximum scale value	Scale specification			Single space reading
$\begin{array}{r} 1 \\ 10 \\ 100 \\ 1000 \end{array}$		50	$\begin{aligned} & 0.02 \\ & 0.2 \\ & 2 \\ & 20 \\ & \hline \end{aligned}$	$\begin{array}{r} 1 \\ 10 \\ 100 \\ 1000 \end{array}$		$\frac{1}{20} \quad 30$	20	$\begin{aligned} & 0.05 \\ & 0.5 \\ & 50 \\ & 50 \\ & \hline \end{aligned}$
$\begin{array}{r} 1.2 \\ 12 \\ 120 \\ 1200 \\ \hline \end{array}$		24	$\begin{aligned} & 0.05 \\ & 0.5 \\ & 5 \\ & 50 \\ & \hline \end{aligned}$	$\begin{array}{r} 1.2 \\ 12 \\ 120 \\ 1200 \\ \hline \end{array}$		$\frac{1}{24} \quad 36$	24	$\begin{aligned} & 0.05 \\ & 0.5 \\ & 55 \\ & 50 \\ & \hline \end{aligned}$
$\begin{array}{r} 1.5 \\ 15 \\ 150 \\ 1500 \\ \hline \end{array}$	$\underset{0}{\mathrm{~L}} \mathrm{O}$	30	$\begin{gathered} 0.05 \\ 0.5 \\ 5 \\ 50 \\ \hline \end{gathered}$	$\begin{array}{r} 1.5 \\ 15 \\ 150 \\ 1500 \\ \hline \end{array}$		$\frac{1}{30} \quad 45$	30	0.05 0.5 50 50
$\begin{array}{r} 2 \\ 20 \\ 200 \\ 2000 \\ \hline \end{array}$		40	$\begin{aligned} & 0.05 \\ & 0.5 \\ & 5 \\ & 50 \end{aligned}$	$\begin{array}{r} 2 \\ 20 \\ 200 \\ 2000 \\ \hline \end{array}$		$\frac{1}{40} \quad 1$	40	$\begin{aligned} & 0.05 \\ & 0.5 \\ & 5 \\ & 50 \end{aligned}$
$\begin{array}{r} 2.5 \\ 25 \\ 250 \\ 2500 \\ \hline \end{array}$		25	$\begin{array}{r} 0.1 \\ 1 \\ 10 \\ 100 \\ \hline \end{array}$	$\begin{array}{r} 2.5 \\ 25 \\ 250 \\ 2500 \\ \hline \end{array}$		$\underset{50}{1} \quad 75$	25	$\begin{array}{r} 0.1 \\ 1 \\ 10 \\ 100 \\ \hline \end{array}$
$\begin{array}{r} 3 \\ 30 \\ 300 \\ 3000 \\ \hline \end{array}$		30	$\begin{array}{r} 0.1 \\ 1 \\ 10 \\ 100 \\ \hline \end{array}$	$\begin{array}{r} 3 \\ 30 \\ 300 \\ 3000 \\ \hline \end{array}$		$\frac{1}{60}$	30	$\begin{array}{r} 0.1 \\ 1 \\ 10 \\ 100 \\ \hline \end{array}$
$\begin{array}{r} 4 \\ 40 \\ 400 \\ 4000 \\ \hline \end{array}$		40	$\begin{array}{r} 0.1 \\ 1 \\ 10 \\ 100 \\ \hline \end{array}$	$\begin{array}{r} 4 \\ 40 \\ 400 \\ 4000 \\ \hline \end{array}$		$\frac{1}{80} 120$	20	$\begin{array}{r} 0.2 \\ 2 \\ 20 \\ 200 \\ \hline \end{array}$
$\begin{array}{r} 4.5 \\ 45 \\ 450 \\ 4500 \\ \hline \end{array}$	$\underset{0}{\square\|+1\| 1 \mid}$	22.5	$\begin{array}{r} 0.2 \\ 2 \\ 20 \\ 200 \\ \hline \end{array}$	-			$=$	$=$
$\begin{array}{r} 5 \\ 50 \\ 500 \\ 5000 \\ \hline \end{array}$	$\underset{0}{\square 10}$	25	$\begin{gathered} 0.2 \\ 2 \\ 20 \\ 200 \\ \hline \end{gathered}$	$\begin{array}{r} 5 \\ 50 \\ 500 \\ 5000 \\ \hline \end{array}$		$\frac{1}{100 \quad 150}$	25	$\begin{array}{r} 0.2 \\ 2 \\ 20 \\ 200 \\ \hline \end{array}$
$\begin{array}{r} 6 \\ 60 \\ 600 \\ 6000 \\ \hline \end{array}$		30	$\begin{array}{r} 0.2 \\ 20 \\ 200 \\ \hline \end{array}$	$\begin{array}{r} 6 \\ 60 \\ 600 \\ 6000 \\ \hline \end{array}$		$\frac{1}{120 \quad 180}$	30	$\begin{array}{r} 0.2 \\ 20 \\ 20 \\ 200 \\ \hline \end{array}$
$\begin{array}{r} 7.5 \\ 75 \\ 750 \\ 7500 \\ \hline \end{array}$		37.5	$\begin{array}{r} 0.2 \\ 2 \\ 20 \\ 200 \\ \hline \end{array}$	$\begin{array}{r} 7.5 \\ 75 \\ 750 \\ 7500 \\ \hline \end{array}$	$\underset{0}{\square} \underset{0}{\text { L }}$	$\frac{1}{150 \quad 225}$	15	$\begin{array}{r} 0.5 \\ 5 \\ 50 \\ 500 \\ \hline \end{array}$
$\begin{array}{r} 8 \\ 80 \\ 800 \\ 8000 \\ \hline \end{array}$	ال	40	$\begin{gathered} 0.2 \\ 2 \\ 20 \\ 200 \end{gathered}$	$\begin{array}{r} 8 \\ 80 \\ 800 \\ 8000 \\ \hline \end{array}$		$\underset{160 \quad 1}{1}$	40	$\begin{gathered} 0.2 \\ 2 \\ 20 \\ 200 \end{gathered}$
$\begin{array}{r} 9 \\ 90 \\ 900 \\ 9000 \\ \hline \end{array}$		45	$\begin{array}{r} 0.2 \\ 2 \\ 20 \\ 200 \\ \hline \end{array}$	$\begin{array}{r} 9 \\ 90 \\ 900 \\ 9000 \\ \hline \end{array}$		$\frac{1}{180 \quad 270}$	18	$\begin{array}{r} 0.5 \\ 5 \\ 50 \\ 500 \\ \hline \end{array}$

Remarks The ranges underlined in the Scale specification column of the table above are omitted for indicators where the interval between scale marks are very small close to the zero point (e.g., an indicator with a movable iron core).

7a. F-210N ordinary scale indicators (Class 2.5)

$\begin{array}{\|c} \text { Maximum } \\ \text { scale } \\ \text { value } \end{array}$	$\begin{gathered} 10 \\ 100 \\ 1000 \end{gathered}$	$\begin{gathered} 1.2 \\ 12 \\ 120 \\ 1200 \end{gathered}$	$\begin{gathered} 1.5 \\ 150 \\ 150 \\ 1500 \end{gathered}$	$\begin{gathered} 20 \\ 20 \\ 200 \\ 2000 \end{gathered}$	$\begin{aligned} & 2.5 \\ & 25 \\ & 250 \\ & 2500 \end{aligned}$	$\begin{gathered} 3 \\ 30 \\ \text { 30 } \\ 3000 \end{gathered}$	$\begin{gathered} 4 \\ 40 \\ 400 \\ 4000 \\ 400 \end{gathered}$	$\begin{gathered} 4.5 \\ 45 \\ 450 \\ 4500 \end{gathered}$	$\begin{gathered} 5 \\ 50 \\ 500 \\ 5000 \\ 500 \end{gathered}$	$\begin{gathered} 6 \\ \begin{array}{c} 60 \\ 600 \\ 6000 \end{array} \\ \hline 6 \end{gathered}$	$\begin{gathered} 7.5 \\ 750 \\ 7500 \\ 750 \end{gathered}$	$\begin{array}{r} 8 \\ 800 \\ 8000 \\ 8000 \end{array}$	($\begin{array}{r}9 \\ 90 \\ \text { 900 } \\ 9000\end{array}$
$\begin{array}{\|c\|} \hline \text { Scale } \\ \text { specification } \end{array}$	E^{10} E^{8} E^{8} E^{6} E^{4} E^{2} E_{0}	E^{12} E^{9} E^{6} E^{6} E^{3} E_{0}		$\begin{aligned} & E^{20} \\ & E_{15}^{15} \\ & E_{10} \\ & E_{10} \\ & E_{5}^{5} \end{aligned}$	$\begin{aligned} & E^{25} \\ & E_{20} \\ & E_{15} \\ & E_{10} \\ & E_{10} \\ & E_{5} \\ & E_{0} \end{aligned}$	E^{30} \bar{E} E^{20} $E E^{20}$ $E E_{10}$ E	$\begin{aligned} & E^{40} \\ & E^{30} \\ & E_{-20} \\ & E_{-10} \\ & E_{0} \end{aligned}$	E^{45} E^{40} E_{30} E_{30} E_{20} E_{10} E_{10} E_{0}	E^{50} E_{40} E^{20} E_{30} E_{20} E_{10} E_{0} E_{0}	E^{60} E E E^{40} E E E_{20} E E	E^{75} E_{60} E_{-40} E^{-20} E_{-2} E_{0}		E^{90} E^{60} E^{60} E^{30} E^{3} E_{0}
Number of	20	24	${ }^{30}$	20	25	30	20	22.5	25	30	15	16	18
$\begin{aligned} & \text { Single } \\ & \text { spacing } \\ & \text { reading } \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.5 \\ & 5 \\ & 50 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.5 \\ & 5 \\ & 50 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.5 \\ & 5 \\ & 50 \end{aligned}$	$\begin{gathered} 0.1 \\ 1 \\ 10 \\ 100 \\ 100 \end{gathered}$	$\begin{gathered} 0.1 \\ 1 \\ 10 \\ 100 \\ 100 \end{gathered}$	$\begin{gathered} 0.1 \\ 1 \\ 10 \\ 100 \\ 100 \end{gathered}$	$\begin{gathered} 0.2 \\ 2 \\ 20 \\ 200 \end{gathered}$	$\begin{gathered} 0.2 \\ 2 \\ 20 \\ 200 \end{gathered}$	$\begin{gathered} 0.2 \\ 2 \\ 20 \\ 200 \end{gathered}$	$\begin{gathered} 0.2 \\ 2 \\ 20 \\ 200 \end{gathered}$	0.5 ¢ 50 500	0.5 5 50 500	0.5 5 50 500

8a. F-213N, F-215N, and F217N ordinary scale indicators

Maximum scale value	$\begin{array}{r} 1 \\ 10 \\ 100 \\ 1000 \end{array}$	$\begin{gathered} 1.2 \\ 12 \\ 120 \\ 1200 \end{gathered}$	$\begin{gathered} 1.5 \\ 15 \\ 150 \\ 1500 \end{gathered}$	$\begin{array}{r} 2 \\ 20 \\ 200 \\ 2000 \\ 2000 \end{array}$	$\begin{gathered} 2.5 \\ 25 \\ 250 \\ 2500 \end{gathered}$	$\begin{array}{r} 3 \\ 30 \\ 300 \\ 300 \\ 3000 \end{array}$	$\begin{array}{r} 4 \\ 40 \\ 400 \\ 400 \\ 4000 \end{array}$	$\begin{gathered} 4.5 \\ 45 \\ 450 \\ 4500 \end{gathered}$	$\begin{array}{r} 5 \\ 50 \\ 500 \\ 5000 \end{array}$	$\begin{array}{r} 6 \\ 60 \\ 600 \\ 6000 \end{array}$	$\begin{gathered} 7.5 \\ 75 \\ 750 \\ 7500 \end{gathered}$	$\begin{array}{r} 8 \\ 80 \\ 800 \\ 8000 \\ 8000 \end{array}$	$\begin{array}{r} 9 \\ 90 \\ 900 \\ 9000 \end{array}$
Scale specification	$E^{E^{10}}{ }^{8}$	E^{12}		\bar{E}^{20} \bar{E}^{15} \bar{E}^{15} \bar{E}_{10} \bar{E}_{5} \bar{E}^{5} \bar{E}_{0}	\bar{E}^{25}		\bar{E}^{40} \bar{E}^{30} \bar{E}^{20} \bar{E}^{20} \bar{E}^{2} \bar{E}_{10} \bar{E}^{2} E_{0}			E^{60} E^{2} E^{40} E^{2} E^{2} E^{20} E_{0}			
Number of divisions	50	24	30	40	50	30	40	45	50	30	37.5	40	45
Single spacing reading	$\begin{aligned} & 0.02 \\ & 0.2 \\ & 2 \\ & 20 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.5 \\ & 5 \\ & 50 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.5 \\ & 5 \\ & 50 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.5 \\ & 5 \\ & 50 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.5 \\ & 5 \\ & 50 \end{aligned}$	$\begin{gathered} 0.1 \\ 1 \\ 10 \\ 100 \end{gathered}$	$\begin{gathered} 0.1 \\ 1 \\ 10 \\ 100 \end{gathered}$	$\begin{gathered} 0.1 \\ 1 \\ 10 \\ 100 \end{gathered}$	$\begin{gathered} 0.1 \\ 1 \\ 10 \\ 100 \end{gathered}$	$\begin{gathered} 0.2 \\ 2 \\ 20 \\ 200 \end{gathered}$	$\begin{gathered} 0.2 \\ 2 \\ 20 \\ 200 \end{gathered}$	$\begin{gathered} 0.2 \\ 2 \\ 20 \\ 200 \end{gathered}$	$\begin{gathered} 0.2 \\ 2 \\ 20 \\ 200 \end{gathered}$

\square Outer Dimension Drawings

Rectangular indicators (Y-2N Series)

FIG. 1 Y-206N

FIG. 2 Y-208N

Panel hole opening dimensions (as viewed from front face of the panel)

FIG. 3 Y-210N

Depth dimension details

Indicator type			Y-206N			Y-208N			Y-210N		
			Type name	A dimension	B dimension	Type name	A dimension	B dimension	Type name	A dimension	B dimension
DC	Ammeters		YM-206NDA	43	-	YM-208NDA	43	-	YM-210NDA	43	-
	Voltmeters		YM-206NDV	43	-	YM-208NDV	43	-	YM-210NDV	43	-
AC	Ammeters		YS-206NAA	43	-	YS-208NAA	43	-	YS-210NAA	43	-
		Uniform scale	YR-206NAA	43	44	YR-208NAA	43	-	YR-210NAA	43	-
	Voltmeters		YS-206NAV	43	-	YS-208NAV	43	45	YS-210NAV	43	45
		Uniform scale	YR-206NAV	43	-	YR-208NAV	43	-	YR-210NAV	43	-
	Wattmeters		YP-206NW	43	-	YP-208NW	43	-	YP-210NW	43	-
	Varmeters		YP-206NVAR	43	-	YP-208NVAR	43	-	YP-210NVAR	43	-
	Power-factor meters	Balanced	YP-206NPF	43	-	YP-208NPF	43	-	YP-210NPF	43	-
		Unbalanced	YP-206NPFU	43	-	YP-208NPFU	43	-	YP-210NPFU	43	-
	Frequency meters		YP-206NF	83	-	YP-208NF	83	-	YP-210NF	83	-
Receiving indicators		DC indicators	YM-206NRI	43	-	YM-208NRI	43	-	YM-210NRI	43	-
		AC indicators	YR-206NRI	43	-	YR-208NRI	43	-	YR-210NRI	43	-

Rectangular indicators (Y-N Series)

Depth dimension details

Note. 100 mm in the case of a model for 1-phase 2-wire systems.

\square outer Dimensional Drawings

Wide-angle indicators (L-N Series)

\square Overall Connection Examples

1. 1-phase, 3-wire circuit

Overall Connection Examples

2. 3-phase, 3-wire circuit (2CT)

3. 3-phase, 3-wire circuit (3CT)

Overall Connection Examples

4. 3-phase, 4-wire circuit

DC Ammeters

YM-8NDA

LM-110NDA

				Rectangular indicators						Wide-angle indicators L-N Series	
				Y-2N Series				Y-N Series			
Siz	(width \times	height)	mm	64×60	85×75	100×85	82×82	102×102	122×122	80×80	110×110
Mod	el name			YM-206NDA	YM-208NDA	YM-210NDA	YM-8NDA	YM-10NDA	YM-12NDA	LM-80NDA	LM-110NDA
Op	ration pri	inciple		Movable coil			Movable coil			Movable coil	
Acc	acy (gra	ade)		2.5			2.5		1.5	2.5	1.5
Sca	e length		(mm)	55	70	85	70	90	100	124	175
We	寺		(kg)	0.07	0.1	0.1	0.1	0.15	0.3	0.3	0.4
	Maximum scale value		Delivery period	Internal resistance (Ω) or voltage drop							
		$100 \mu \mathrm{~A}$	\triangle	2000Ω			2000Ω		5000Ω	-	
		$200 \mu \mathrm{~A}$	\triangle	1200Ω			1200Ω		5000Ω	-	
		$300 \mu \mathrm{~A}$	\triangle	1000Ω			1000Ω		1550Ω	920Ω	
		$500 \mu \mathrm{~A}$	\triangle	730Ω			730Ω		780Ω	580Ω	
		1 mA	\bigcirc	200Ω			200Ω		250Ω	180Ω	
		3 mA	\bigcirc	70Ω			70Ω		85Ω	60Ω	
		5 mA	\bigcirc	8Ω			8Ω		50Ω	8Ω	
		10 mA	\bigcirc		2Ω		2Ω		25Ω	60 mV	
		20 mA	\bigcirc	0.8Ω			0.8Ω		0.8Ω		
		$\begin{aligned} & 50,100 \mathrm{~mA} \\ & 200,500 \mathrm{~mA} \\ & 1,2,5,7.5 \mathrm{~A} \\ & 10,15,20, \\ & 30 \mathrm{~A} \end{aligned}$	\bigcirc	60 mV			60 mV				
	Combined with shunt	1A~7500A	\triangle	$60 \mathrm{mV}, 100 \mathrm{mV}$(consumption current: approx. 20mA)			$60 \mathrm{mV}, 100 \mathrm{mV}$(consumption current: approx. 20mA) Note 2			$60 \mathrm{mV}, 100 \mathrm{mV} \quad$ Note 2 (consumption current: approx. 5 mA)	
	pecial ification	With lead wire adjustment resistor	\bigcirc	Manufacturable			Manufacturable			Manufacturable	
Page with outer dimensions drawing				35			36				

Note 1. The operating circuit voltage is 300 V or less with the $\mathrm{Y}-2 \mathrm{~N}$ Series, and 600 V or less with the $\mathrm{Y}-\mathrm{N}$ Series and L-N Series. Delivery period classification
Note 2. In the case of combined use with a shunt, refer to "DC Ammeter Combined with Shunt" on p.44, and specify the lead wire thickness and one-way length or round-trip resistance.

Remarks (1) In the case of a bidirectional deflection indicator, determine the specifications according to the following.

- Direct-rating models can be manufactured if the larger of the left and right scales is 30 A or less.
- For combined use with a shunt, select a scale so that the sum of the absolute values of the indicator ratings is 60 mV or more.

Example: In the case of a shunt with ratings of 100 A and 60 mV
Ammeter scale -50~0~+100A
Ammeter rating $-30 \sim 0 \sim+60 \mathrm{mV}$
(Sum of absolute values $=90 \mathrm{mV} \geq 60 \mathrm{mV}$)
(2) Refer to "Receiving Indicators" on p. 67 concerning zerosuppressed indicators.
(3) Please make sure to read the "Safety Precautions" (pp.5-8) and the "Selection Precautions" (p.9) to assist in selecting the model and use specifications suited to the application.

Symbol	OStandard product	OQuasistandard product	\triangle Special product
Reternecediveryperiod	Immediate delivery	Within 20 days	21 to 60 days

Connection diagrams

Fig. 1 DC ammeter (direct) load

Fig. 2 DC ammeter (combined with shunt)
 Load

Ordering method
The items in \square must be specified.

OIndicator combined with shunt

DC ammeter combined with shunt

For DC ammeters combined with a shunt, the measured value changes according to the resistance value of the lead wire. Thus, please refer to the following tables and specify the thickness and one-way length or round-trip resistance value of the lead wire connecting the indicator and the shunt.
The lead wire resistance value must be within the "maximum allowable value."

- Table of maximum allowable values of lead wires for DC ammeters combined with shunts

DC ammeter combined with shunt			Maximum one-way length (m) in the case of a $2 \mathrm{~mm}^{2}$ lead wire (Mitsubishi Electric standard lead wire)	Maximum one-way length (m) in the case of a $3.5 \mathrm{~mm}^{2}$ lead wire
Model name	Indicator rating (mV)	Maximum allowable resistance value of lead wire (Ω)		
$\begin{aligned} & \text { YM-206NDA, YM-208NDA } \\ & \text { YM-210NDA } \\ & \text { YM-8NDA, YM-10NDA } \end{aligned}$	60 or more less than 75	0.72	39	69
	75 or more less than 100	1.55	84	149
	100 or more less than 150	2.37	128	227
	150 or more	4.02	217	384
YM-12NDA	60 or more less than 75	0.40	21	38
	75 or more less than 100	0.90	48	86
	100 or more less than 150	1.40	70	134
	150 or more	2.40	135	230
LM-80NDA LM-110NDA	60 or more less than 75	1.00	54	96
	75 or more less than 100	1.50	80	144
	100 or more less than 150	2.40	135	230
	150 or more	4.00	217	384

Remarks
(1) In the case of a bidirectional deflection indicator, the indicator rating is the sum of the absolute values of the respective ratings.
(2) If a lead wire length exceeding the values in the above table is required, use a lead wire with a large cross-sectional area or use a shunt with a high rated voltage.
-Table of round-trip resistance values according to lead wire thicknesses and one-way lengths

- One-way length	Round-trip resistance value (Ω) (length: one-way)							Lead wire resistance (Ω / km)
Cross-sectional area	1 m	2 m	3 m	4 m	5 m	10m	20m	
$1.25 \mathrm{~mm}^{2}$	0.033	0.066	0.099	0.132	0.165	0.330	0.660	16.5
$2 \mathrm{~mm}^{2}$	0.018	0.037	0.055	0.074	0.092	0.184	0.368	9.2
$3.5 \mathrm{~mm}^{2}$	0.010	0.021	0.031	0.042	0.052	0.104	0.208	5.2
$5.5 \mathrm{~mm}^{2}$	0.007	0.013	0.020	0.027	0.033	0.066	0.132	3.3

OLead wires for shunt connection

Lead wires for connecting an indicator with a shunt can be manufactured according to specifications as accessories to the indicator.
The standard is: two $\mathbf{2 m m} \mathbf{m}^{\mathbf{2}} \mathbf{- 2 m}$ (one-way) $\mathbf{1 5 0 0 V}$ heat-resistant vinyl wires (blue) for electric equipment.
Remarks (1) Only wires with a cross-sectional area of $2 \mathrm{~mm}^{2}$ are provided; other types of wires are to be prepared by the customer.

DC ammeter with lead wire adjustment resistor

If a DC ammeter combined with a shunt is to be arranged in advance with the lead wire length being indeterminate, use a DC ammeter with a lead wire adjustment resistor, which can be adjusted according to the lead wire resistance after installation of the indicator.

- Adjustment range of lead wire resistance

The lead wire resistance adjustment range is the same as the maximum allowable resistance value of lead wire in the "Table of maximum allowable values of lead wires."

- Adjustment method
- Adjustment by voltage application

Disconnect the lead wires connected to the voltage terminals of the shunt, and adjust with the lead wire adjustment resistor so that the indicator deflects fully when a voltage corresponding to the indicator rating is applied to the respective ends of the lead wires.

DC ammeter with lead wire adjustment resistor

$\square \mathrm{dc}$ Ammeters

Accessories

Shunt for DC ammeter

Specifications

Accuracy	Grade 0.5 Percentage with respect to the rated voltage drop between voltage terminals or the shunt resistance value when the consumption current of the indicator is ignored.
Rated voltage	60 mV (standard), 100 mV (quasi-standard)
Rated current	$1 \sim 7500 \mathrm{~A}$
Structure	Shunt with base for 150A or less, shunt without base for 200A or more.
Voltage test	3320 VAC for 5 s (applies only to shunts with base)
Insulation resistance	$10 \mathrm{M} \Omega$ or more at test voltage of 500 V (applies only to shunts with base)

Remarks (1) For low-current shunts, the influence of the consumption current may be significant in some cases. If a shunt is ordered separately, it may be necessary to adjust the indicator that is used in combination with it.
(2) Shunts are designed for a temperature rise limit of $80^{\circ} \mathrm{C}$ at a current that is 80% of the rated current. For this reason, adequate care is required when tightening the bus lines in high-current, large-loss applications.
(3) Shunts with an insulating base can also be manufactured for rated currents greater than 150A and 600A or less.

Rating selection and mounting

1. Rating selection

For the shunt rating, select a current value with adequate allowance, taking into consideration that a shunt is a heat source. (As a general rule, use a shunt for values approximately 1.5 times or more of the continuous operating current.)
2. Mounting attitude

Mount the shunt as shown in the diagram.
3. Voltage terminals

Two voltage terminals are provided at one side block for shunts with a voltage of 2000A or more. In this case, use the diagonally positioned voltage terminal.
(Error may increase by approximately 0.5% when the voltage terminals are used in parallel.)

(Floor)
Vertical mounting for best natural heat radiation

Outer dimensions

Fig. 1 1~5A ($60 \mathrm{mV}, 100 \mathrm{mV}$)

Fig. 2 10~150A ($60 \mathrm{mV}, 100 \mathrm{mV}$)

Fig. 3 200~300A ($\mathbf{6 0 m V}$, 100mV)
Fig. 4 400~1000A (60mV) 400~750A (100 mV)

Bus

Bus
line

Fig. 5 1200~1500A (60 mV) $1000 \sim 1500 \mathrm{~A}(100 \mathrm{mV})$

Fig. 6 2000~3000A ($60 \mathrm{mV}, 100 \mathrm{mV}$)

Fig. 7 4000~7500A ($60 \mathrm{mV}, 100 \mathrm{mV}$)

Table of dimension variations (rated voltage: 60 mV)

Rated current A	Rated voltage mV	Outer dimension drawing No.	Variable dimensions mm											Delivery period classification
			Interval between current terminals		Current terminal bolt	Voltage terminal screw	Block width	Shunt base mounting hole interval	Width of shunt (base)	Shunt base mounting hole diameter	Height	Total length	Contacting part length	
			P	Q	D	d	E	R	W	ϕ	H	S	ℓ	
1, 2, 3, 5	60	FIG. 1	85	-	M5	M4	-	120	26	4.5	25	140	10	©
10, 15, 20, 25, 30	60	FIG. 2	85	-	M5	M4	-	120	26	4.5	25	140	10	
40, 50					M6									
60, 75, 100					M8					4.5	30			
150			110					150	30	5.5		175	15	
200	60	FIG. 3	110	-	M8	M4	-	-	33	-	15	135	15	
250						M5			38					
300					M12				43					
400	60	FIG. 4	115	-	M12	M5	-	-	45	-	20	155	35	
500													42.5	
600	60	FIG. 4	130	-	M12	M5	-	-	45	-	30	175	42.5	
750													45	
1000			135						60					
1200	60	FIG. 5	140	35	M12	M5	-	-	70	-	35	185	47	
1500													52.5	
2000	60	FIG. 6	175	45	M12	M5	-	-	85	-	55	230	30	
2500, 3000			180	50					100		70	240		\triangle
4000	60	FIG. 7	180	90	M12	M5	150	-	150	-	80	250	70	\triangle
5000			220								100	280	85	
6000			235				160				110	310	100	
7500												330		

-Table of dimension variations (rated voltage: 100 mV)

Delivery period classification

Symbol	OStandard product	OQuasi-standard product	\triangle Special product
Reference delivery period	Immediate delivery	Within 20 days	21 to 60 days

DC Voltmeters

YM-206NDV

YM-8NDV

LM-110NDV

				Rectangular indicators						Wide-angle indicators L-N Series	
				Y-2N Series			Y-N Series			L-N Series	
Size	(width \times heigher	eight)	mm	64×60	85×75	100×85	82×82	102×102	122×122	80×80	110×110
Mod	del name			YM-206NDV	YM-208NDV	YM-210NDV	YM-8NDV	YM-10NDV	YM-12NDV	LM-80NDV	LM-110NDV
Ope	eration princip	ciple		Movable coil			Movable coil			Movable coil	
Acc	uracy (grade)				2.5		2.		1.5	2.5	1.5
Scal	le length		(mm)	55	70	85	70	90	100	124	175
Wei	ght		(kg)	0.07	0.1	0.1	0.1	0.15	0.3	0.3	0.4
	Maximum scale value	Accessory	Delivery period	Consumption current (approx.) (mA)							
馬	1, 3, 5V	-	\bigcirc	1	1	1	1	1	1	1	1
-	10, 15, 30V	-	\bigcirc	1	1	1	1	1	1	1	1
응	50, 100V	-	\bigcirc	1	1	1	1	1	1	1	1
$\stackrel{1}{2}$	150, 300V	-	\bigcirc	1	1	1	1	1	1	1	1
$\stackrel{\text { O }}{\text { ¢ }}$	500, 600V	-	\bigcirc	(1) Note 1	(1) Note 1	(1) Note 1	1	1	1	1	1
\%	750 V	GR-2 multiplier	\bigcirc	(1) Note 1							
	1000 V		\bigcirc	(1) Note 1							
衰	1200 V	KR-1 3-terminal multiplier	\bigcirc	(2) Note 1							
¢	1500 V		\bigcirc	(2) Note 1							
\%	1800 V		\bigcirc	(2) Note 1							
흔	2000V		\bigcirc	(2) Note 1							
Page with outer dimensions drawing				35			36			37	

Remarks (1) If, with a maximum scale of 600 V or less, an externally mounted multiplier is desired, the voltmeter will be manufactured with the GR-2 multiplier as an accessory.
(2) Indicators with both positive and negative readings on the scale can be manufactured if the larger of the left and right scales is 2000 V or less.
The table above shows whether or not a multiplier is provided.

) If a high sensitivity (high input resistance) indicator is desired as a DC voltmeter with a maximum scale of 100 V or less, please specify the maximum scale and sensitivity current of the indicator.
Voltmeters can be manufactured with a sensitivity current within the range shown for DC ammeters on p. 45 .
There may be a maximum difference of approximately $\pm 5 \%$ with respect to the value specified for the sensitivity current.
(4) The GR-2 and KR-1 multipliers are dedicated accessories (non-compatible). They can only be used in combination with the indicators specified.
(5) Please make sure to read the "Safety Precautions" (pp.5-8) and the "Selection Precautions" (p.9) to assist in selecting the model and use specifications suited to the application.
Note 1. These voltmeters do not have a JIS mark.
Connection diagrams

Fig. 1 DC voltmeter (direct)

Load

Fig. 2 DC voltmeter (with GR-2 multiplier)

Load

Fig. 3 DC voltmeter (with KR-1 3-terminal multiplier)

Load

Dual-range indicators

Dual-range indicators with a maximum scale of 600 V or less are manufactured with the GR-2 multiplier as an accessory.
[Example] In the case of a dual-range indicator with $0 \sim 150 \mathrm{~V}$ and $0 \sim 75 \mathrm{~V}$ indicator scales.

Outer dimensions of the accessories
Fig. 1 GR-2 multiplier

Fig. 3 KR-1 3-terminal multiplier

Ordering method

The items in	ust be sp	fied.			
Model name	Multiplier	Scale	Cover type	Special specifications	Number of units
YM-206NDV	GR-2	0-1000V	B	Double scale, colored lines, etc.	10

YS-8NAA

LS-110NAA

					Rectangular indicators												Wide-angle indicators L-N Series			
					Y-2N Series						Y-N Series									
Size	(wi	idth \times	\times height	mm	64	$\times 60$		$\times 75$	100	X85	82	$\times 82$	102×	$\times 102$	122	$\times 122$		$\times 80$	110×	110
Mod	del n	name			YS-20	06NA	YS-20	08NAA	YS-21	ONAA	YS-8	NAA	YS-1	ONAA	YS-1	2NAA	LS-80	ONAA	LS-110	ONAA
Op	ratio	on pri	inciple				Movable	iron core					Movable	iron core				Movable	iron core	
	c	(gra	ade)					2.5				2.	. 5			. 5		2.5	1.5	
Fre	quen											50 and	60Hz							
Sca	le le	ngth	-	(mm)		5		70		5		0		90		00		24	17	
Con	sum	mption	VA	(VA)		. 0		1.0		. 0		. 0		1.0		. 0		. 0	2.0	
We				(kg)	0	. 1		0.1		15	0.	. 1		. 15		. 3		. 3	0.	
		Maxim	mum sc	value	Ordinary	Expanded														
"్̄ర	$\stackrel{\stackrel{\rightharpoonup}{\circ}}{\square}$	500m			\bigcirc	-	-	-	-											
鹪	$\stackrel{\circ}{\square}$	1,3A			\bigcirc															
$\begin{aligned} & \frac{0}{0} \\ & \text { 응 } \end{aligned}$		5, 10	0, 15, 20		\bigcirc	©	\bigcirc	©	\bigcirc	(©	()	\bigcirc	©	(\bigcirc	\bigcirc	\bigcirc	((
		$\begin{aligned} & 5 / 5,1 \\ & 40 / 5, \\ & 100 / 5 \\ & 300 / 5 \end{aligned}$	$\begin{aligned} & 10 / 5,15 / 5 \\ & , 50 / 5,60 \\ & 5,150 / 5, \\ & 5,400 / 5, \end{aligned}$	$\begin{aligned} & 5,30 / 5 \mathrm{~A} \\ & 5 / 5 \mathrm{~A} \\ & 5,250 / 5 \mathrm{~A} \end{aligned}$	\bigcirc	()	\bigcirc	()	\bigcirc	(()	()	\bigcirc							
	$\begin{aligned} & 5 \\ & 0 \\ & 0 \\ & \hline 0 \\ & \hline 0 \end{aligned}$		15A (indi	rating 5A)	\bigcirc															
$\begin{aligned} & \text { Øo } \\ & \text { On } \\ & \hline \underline{0} \end{aligned}$	$\begin{aligned} & \stackrel{0}{0} \\ & \underline{I} \end{aligned}$		/1A (indi	rating 1A)	\bigcirc															
Page with outer dimensions drawing					35						36						37			

Remarks Please make sure to read the "Safety Precautions" (pp.5-8) and the "Selection Precautions" (p.9) to Delivery period classification assist in selecting the model and use specifications suited to the application.

Expanded scale indicator

Symbol	OStandard product	Quasi-standard product	\triangle Special product
Reterencedediveryperiod	Immediate delivery	Within 20 days	21 to 60 days

Use expanded scale indicators in motor circuits or other locations where overcurrents flow temporarily.
The effective measurement range is up to the indicator rating value ($1 x$ value). The expanded scale part is for reference only, and the scale numerals are indicated in red.
Remarks Ensure that a current exceeding the rating is applied such that (the applied current $(A) /$ rated current $(A))^{2} \times$ application duration does not exceed 500 .

Example of expanded scale diagram (YS-206NAA)
Specifications

	Rated scale value	Expanded scale value		
		Expanded $2 x$	Expanded $3 x$	Expanded 5x
$\begin{aligned} & \stackrel{U}{0} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	1A	2A	3A	5A
	3A	6A	9A	15A
	5A	10A	15A	25A
	10A	20A	30A	50A
	15A	30A	45A	75A
	20A	40A	60A	-
	30A	60A	90A	-
	Indicator rating: 5A	CT ratio $\times 10 \mathrm{~A}$	CT ratio $\times 15 \mathrm{~A}$	CT ratio $\times 25 \mathrm{~A}$
	Indicator rating: 1A	CT ratio $\times 2 \mathrm{~A}$	CT ratio $\times 3$ A	CT ratio $\times 5$ A

- Recommended ammeter scale values for motor circuits 200V 3-phase induction motor

Motor output (kW)	Rated current (reference value A)	Recommended scale	
		$0-3-9 \mathrm{~A}$	CT ratio
0.2	3.2	$0-5-15 \mathrm{~A}$	-
0.4	4.8	$0-7.5-22.5 \mathrm{~A}$	$5 / 5 \mathrm{~A}$
0.75	8	$0-10-30 \mathrm{~A}$	$7.5 / 5 \mathrm{~A}$
1.5	11.1	$0-15-45 \mathrm{~A}$	$10 / 5 \mathrm{~A}$
2.2	17.4	$0-25-75 \mathrm{~A}$	$15 / 5 \mathrm{~A}$
3.7	26	$0-30-90 \mathrm{~A}$	$20 / 5 \mathrm{~A}$
5.5	34	$0-50-150 \mathrm{~A}$	$30 / 5 \mathrm{~A}$
7.5	48	$0-60-180 \mathrm{~A}$	$40 / 5 \mathrm{~A}$
11	65	$0-75-225 \mathrm{~A}$	$60 / 5 \mathrm{~A}$
15	79	$0-100-300 \mathrm{~A}$	$75 / 5 \mathrm{~A}$
18.5	93	$0-120-360 \mathrm{~A}$	$100 / 5 \mathrm{~A}$
22	125	$0-150-450 \mathrm{~A}$	$120 / 5 \mathrm{~A}$
30	160	$0-200-600 \mathrm{~A}$	$150 / 5 \mathrm{~A}$
37			$200 / 5 \mathrm{~A}$

Uniform scale

Specifications

YR-206NAA

YR-8NAA

	Rectangular indicators												Wide-angle indicators L-N Series			
	Y-2N Series						Y-N Series									
Size (width \times height) $\quad \mathrm{mm}$	64×60		85×75		100×82		82×82		102×102		122×122		80×80		110×110	
Model name	YR-206NAA		YR-208NAA		YR-210NAA		YR-8NAA		YR-10NAA		YR-12NAA		LR-80NAA		LR-110NAA	
Operation principle	Rectifier						Rectifier						Rectifier			
Accuracy (grade)	2.5						2.5				1.5		2.5		1.5	
Frequency	50 and 60 Hz															
Scale length (mm)	55		70		85		70		90		100		124		175	
Weight (kg)	0.1		0.1		0.15		0.1		0.15		0.3		0.3		0.5	
Maximum scale value	Consumption VA or voltage drop															
	Ordinary	Expanded														
200, $300 \mu \mathrm{~A}$	-	-	1.7V	-	-	-	-	-								
- 50500 A	1.4 V	-	1.4V	-	1.4 V	-	-	-	-	-						
\cdots ¢	1.4 V	-														
- $10,20,30,50,75 \mathrm{~mA}$	1.2V	-	1.2 V	-	1.2V	-										
	0.06 VA	0.3VA	0.06 VA	0.3VA	0.06 VA	0.3VA	0.06 VA	0.3 VA	0.06 VA	0.3 VA	0.06 VA	0.3VA	0.2VA	0.2 VA	0.2VA	0.2VA
흐 넝 1, 3A	0.06 VA	0.3VA	0.06 VA	0.3VA	0.06 VA	0.3VA	0.06 VA	0.3 VA	0.06 VA	0.3 VA	0.06 VA	0.3VA	0.2 VA	0.2 VA	0.2VA	0.2VA
- $5,10,15,20 \mathrm{~A}$	0.1 VA	0.3VA	0.1VA	0.3VA	0.1VA	0.3VA	0.1 VA	0.3VA	0.1 VA	0.3 VA	0.1VA	0.3VA	0.2VA	0.2 VA	0.2VA	0.2VA
30A	0.2VA	-	0.2VA	0.2VA	0.2VA	0.2VA										
既	0.1 VA	0.3VA	0.1 VA	0.3 VA	0.1 VA	0.3VA	0.2VA	0.2 VA	0.2VA	0.2VA						
	0.06 VA	0.3 VA	0.06 VA	0.3VA	0.2VA	0.2 VA	0.2VA	0.2VA								
Delivery period classification	\bigcirc															
Page with outer dimensions drawing	35						36						37			

Remarks (1) Error may occur due to waveform distortion.
(2) LR-110NAA and LR-80NAA models rated 100 mA to 30 A incorporate an approximate effective value rectifying circuit.
(3) Please make sure to read the "Safety Precautions" (pp.5-8) and the "Selection Precautions" (p.9) to assist in selecting the model and use specifications suited to the application.
Delivery period classification

Symbol	Standard product	OQuasi-standard product	\triangle Special product
Reierencedelieypyperiod	Immediate delivery	Within 20 days	21 to 60 days

Note 1. The operating circuit voltage is 300 V or less for the $\mathrm{Y}-2 \mathrm{~N}$ Series, and 600 V or less for the $\mathrm{Y}-\mathrm{N}$ Series and L-N Series.

Connection diagrams

Fig. 1 AC ammeter (direct)

Load

Fig. 2 AC ammeter (combined with CT)

Fig. 3 AC ammeter (combination with 3-phase circuit current changeover switch)

Note 2. For low-voltage circuits, grounding of the secondary side of the current transformer is unnecessary.

Ordering method

The items in \square must be specified.
-Indicator combined with current transformer

Model name	Indicator rating	Scale	CT ratio	Cover type	Special specifications
YS-8NAA	5A	0-100-300A	100/5A	BR	Double scale, colored lines, etc.

-Direct indicators

Model name	Indicator rating	Scale	Cover type	Special specifications
YS-8NAA	20A	0-20	G	Double scale, colo

Specifications

YS-8NAV

LS-110NAV

				Rectangular indicators						Wide-angle indicators L-N Series	
				Y-2N Series			Y-N Series				
Size	(wid	width \times height)	mm	64×60	85×75	100×85	82×82	102×102	122×122	80×80	110×110
Mod	el na	name		YS-206NAV	YS-208NAV	YS-210NAV	YS-8NAV	YS-10NAV	YS-12NAV	LS-80NAV	LS-110NAV
Ope	ratio	on principle		Movable iron core			Movable iron core			Movable iron core	
Acc	uracy	y (grade)		2.5			2.5		1.5	2.5	1.5
Frequency				50 and 60 Hz							
Sca	e len	ngth	(mm)	55	70	85	70	90	100	124	175
Con	sum	mption VA	(VA)	3	3	3	3	3	6	3	3
Weight (kg) Maximum scale value				0.1	0.1	0.15	0.15	0.15	0.4	0.4	0.5
				Delivery period classification							
		50 V		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-
		75,100,110		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-
		150 V		(\bigcirc	\bigcirc	©	\bigcirc	\bigcirc	©	(
		190, 260V		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-
		300 V		(()	()	()	()	()	()	(
		400, 500V		-	-	-	-	-	\bigcirc	-	-
		600 V		-	-	-	-	-	()	\bigcirc	\bigcirc
	5	VT ratio	Scale	\bigcirc	\bigcirc	\bigcirc	(0)	()	(\bigcirc	(
	笑	440/110V	600 V								
	응	3300/110V	4500 V								
	¢	6600/110V	9000 V								
	$\begin{aligned} & \text { 흘 } \\ & \text { 흘 } \end{aligned}$	Besides the above $\square / 110 \mathrm{~V}$	$\begin{gathered} \text { VT ratio } \times \\ 150 \mathrm{~V} \end{gathered}$	\bigcirc							
Page with outer dimensions drawing				35			36			37	

Remarks (1) A specially rated AC voltmeter with a rectifier indicator and a maximum scale of 600 V or less is manufactured.

Delivery period classification

Symbol	OStandard product	OQuasi-standard product	\triangle Special product
Reterencedediveryperiod	Immediate delivery	Within 20 days	21 to 60 days

Note 1. The LS-110NAV and LS-NAV direct 600 V indicators are provided with the KR-1 multiplier as an accessory (power consumption is approximately 6VA). The KR-1 multiplier is a dedicated accessory (non-compatible accessory), and thus cannot be used in combinations other than those designated for the indicators.

Connection diagrams

Note 2. For low-voltage circuits, grounding of the secondary side of the instrument voltage transformer is unnecessary.

Ordering method

The items in \square must be specified.
-Indicator combined with instrument voltage transformer

-Direct indicator

Number of units 10

Outer dimensions of accessory

Uniform scale

Specifications

YR-8NAV

				Rectangular indicators												Wide-angle indicators L-N Series			
				Y-2N Series						Y-N Series									
Size (width \times height)			mm	64×60		85×75		100×85		82×82		102×102		122×122		80×80		110×110	
Model name				YR-20	6NAV	YR-20	8NAV	YR-21	ONAV	YR-8	NAV	YR-10	ONAV	YR-1	2NAV	LR-80	ONAV	LR-11	ONAV
Operation principle				Rectifier						Rectifier						Rectifier			
Accuracy (grade)				2.5						2.5				1.5		2.5		1.5	
Frequency				50 and 60 Hz															
Scale length (mm)				55		70		85		70		90		100		124		175	
Weight			(kg)	0.07		0.1		0.1		0.1		0.15		0.5		0.4		0.5	
	Maximum scale value			Consumption current and delivery period classification															
				Consumption	Delivery period	Consumption	Delivery period	Consumption	Delivery period	Consumption	Deliver period	Consumption	Delivery period						
	Direct indicator	5, 10, 30		1 mA	\bigcirc	0.1 VA	\bigcirc	0.1 VA	\bigcirc										
		50 V		1 mA	\bigcirc	0.2 VA	\bigcirc	0.2 VA	\bigcirc										
		75, 100,		1 mA	\bigcirc	0.5 VA	\bigcirc	0.5 VA	\bigcirc										
		150V		2 mA	\bigcirc	0.6 VA	\bigcirc	0.6 VA	\bigcirc										
		190, 260		1 mA	\bigcirc	1.2 VA	\bigcirc	1.2 VA	\bigcirc										
		300V		2 mA	\bigcirc	1.2VA	\bigcirc	1.2 VA	\bigcirc										
		400, 500	00V	(1mA) (Note 1)	\bigcirc	(1mA) (Note 1)	\bigcirc	(1mA) (Note 1)	\bigcirc	1 mA	\bigcirc	1 mA	\bigcirc	1 mA	\bigcirc	0.6 VA	\bigcirc	0.6 VA	\bigcirc
	$\begin{gathered} \hline \begin{array}{c} \text { Combined with } \\ V T \end{array} \\ \hline \end{gathered}$	VT ratio	50 V	2 mA	\bigcirc	0.6 VA	\bigcirc	0.6VA	\bigcirc										
Page with outer dimensions drawing				35						36						37			

Remarks (1) Although the scale of the rectifier AC voltmeter is substantially uniform with an indicator having a Delivery period classification maximum scale value of 10 V or less, the divisions are slightly reduced near " 0 ".
(2) Error may occur due to waveform distortion.
(3) LR-110NAV and LR-80NAV models rated 75 V to 300 V incorporate an approximate effective value rectifying circuit.

Symbol	OStandard product	OQuasistandard product	\triangle Special product
Reference delieryperiod	Immediate delivery	Within 20 days	21 to 60 days

(4) Please make sure to read the "Safety Precautions" (pp.5-8) and the "Selection Precautions" (p.9) to assist in selecting the model and use specifications suited to the application.
Note 1. These models do not have a JIS mark.

YP-208NW

YP-10NW

Remarks (1) In regards to "Indicator rating (Po) kW" in the "Rating" column:

1-phase, 2-wire	$\mathrm{Po}=110 \mathrm{~V} \times 5 \mathrm{~A}=550 \simeq 0.5 \mathrm{~kW}$	($\mathrm{Po}=0.4$ to 0.6 kW , taking into account adjustment range multiplying factors of 0.8 to 1.2)
wattmeters	$\mathrm{Po}=220 \mathrm{~V} \times 5 \mathrm{~A}=1100 \simeq 1.0 \mathrm{~kW}$	(Po=0.8 to 1.2 kW , taking into account adjustment range multiplying factors of 0.8 to 1.2)
3 -phase, 3-wire	$\mathrm{Po}=\sqrt{3} \times 110 \mathrm{~V} \times 5 \mathrm{~A}=953 \simeq 1 \mathrm{~kW}$	(Po=0.8 to 1.2 kW , taking into account adjustment range multiplying factors of 0.8 to 1.2)
wattmeters	$\mathrm{Po}=\sqrt{3} \times 220 \mathrm{~V} \times 5 \mathrm{~A}=1906 \simeq 2 \mathrm{~kW}$	($\mathrm{Po}=1.6$ to 2.4 kW , taking into account adjustment range multiplying factors of 0.8 to 1.2)

wattmeters $\quad\left\{\begin{array}{l}\mathrm{Po}=3 \times 110 \mathrm{~V} \times 5 \mathrm{~A}=\sqrt{3} \times 190 \mathrm{~V} \times 5 \mathrm{~A}=1650 \simeq 1.7 \mathrm{~kW} \quad(\mathrm{Po}=1.4 \text { to } 2.0 \mathrm{~kW} \text {, taking into account adjustment range multiplying factors of } 0.8 \text { to } 1.2)\end{array}\right.$ $\mathrm{Po}=3 \times 220 \mathrm{~V} \times 5 \mathrm{~A}=\sqrt{3} \times 380 \mathrm{~V} \times 5 \mathrm{~A}=3300 \simeq 3.4 \mathrm{~kW} \quad(\mathrm{Po}=2.8$ to 4.0 kW , taking into account adjustment range multiplying factors of 0.8 to 1.2)
(2) Bidirectional deflection indicators can also be manufactured.
(3) Models with a 1 A current rating can also be manufactured; the power consumption is basically the same as that of a 5 A model. The indicator rating value in this case is calculated by substituting 1 A in place of 5 A in the equations of Remarks (1).
(4) The T-150 rectifier is a dedicated accessory (non-compatible accessory), and thus cannot be used in combinations other than those designated for the indicators. The distance between the indicator and the T-150 rectifier must be 5 m or less, or the round-trip lead wire resistance must be 0.5Ω or less.
(5) The weight of the T-150 accessory rectifier is approximately 1 kg .
(6) Use a wattmeter with an input voltage in the range of 85 to 115% of the rated value (rated voltage $\pm 15 \%$).

The indication may be unstable when used with an input voltage of 85% or less of the rating or the input voltage is switched on and off.
(7) Please make sure to read the "Safety Precautions" (pp.5-8) and the "Selection Precautions" (p.9) to assist in selecting the model and use specifications suited to the application.
Scale calculation formula for wattmeter

Phase-wire system	Secondary rating	Scale calculation formula for wattmeter	Remarks
1-phase 2-wire	110 V 5A	Indicator scale P (kW) $=\mathrm{VT}$ ratio $\times \mathrm{CT}$ ratio $\times \mathrm{Po}(0.4 \sim 0.6)$	- The value at the left is multiplied by $1 / 5$ in the case of a CT secondary current of 1 A .
	220 V 5A	Indicator scale $P(k W)=C T$ ratio \times Po (0.8~1.2)	
1-phase 3-wire	100/200V 5A	Indicator scale $\mathrm{P}(\mathrm{kW})=\mathrm{CT}$ ratio $\times \mathrm{Po}(0.8 \sim 1.2)$	
3-phase 3-wire	110 V 5A	Indicator scale $\mathrm{P}(\mathrm{kW})=\mathrm{VT}$ ratio $\times \mathrm{CT}$ ratio $\times \mathrm{Po}$ (0.8~1.2)	
	220 V 5A	Indicator scale $\mathrm{P}(\mathrm{kW})=\mathrm{CT}$ ratio $\times \mathrm{Po}$ (1.6~2.4)	
3-phase 4-wire	$\frac{110}{\sqrt{3}} / 110 \mathrm{~V} \quad 5 \mathrm{~A}$	Indicator scale $\mathrm{P}(\mathrm{kW})=\mathrm{VT}$ ratio $\times \mathrm{CT}$ ratio $\times \mathrm{Po}(0.8 \sim 1.2)$	
	110/190V 5A	Indicator scale $\mathrm{P}(\mathrm{kW})=\mathrm{VT}$ ratio $\times \mathrm{CT}$ ratio $\times \mathrm{Po}(1.4 \sim 2.0)$	
	220/380V 5A	Indicator scale P $(\mathrm{kW})=\mathrm{VT}$ ratio $\times \mathrm{CT}$ ratio \times Po (2.8~4.0)	

Calculation example: In the case of a 3-phase, 3-wire circuit, VT 6600/110V and CT 100/5A
Indicator scale $P(k W)=\frac{6600}{110} \times \frac{100}{5} \times P o(0.8 \sim 1.2)=960 \sim 1440 \mathrm{~kW}$
Therefore, wattmeters can be manufactured with a scale of 960-1440kW.
This varies slightly according to the rating. Refer to the Wattmeter Scale Selection Reference Table on p. 58 for details.

YP-12NW

LP-110NW

Specifications

Delivery period classification

Outer dimensions of accessories

Symbol	OStandard product	OQuasi-standard product	\triangle Special product
Reterencedediverperiod	Immediate delivery	Within 20 days	21 to 60 days

-Terminal configuration

Fig. 1 For 1-phase, 2-wire system Fig. 2 For 1-phase, 3-wire system

Fig. 3 For 3-phase, 3-wire system Fig. 4 For 3-phase, 4-wire system

Ordering method

Connection diagrams

-1-phase, 2-wire system

-1-phase, 3-wire system

Fig. 5 YP-206NW, YP-208NW, YP-210NW, YP-8NW, YP-10NW and LP-80NW (combined with CT)

-3-phase, 3-wire system
Fig. 7 YP-206NW, YP-208NW, YP-210NW, YP-8NW,
YP-10NW and
LP-80NW
(combined with CT)

Fig. 2 YP-206NW, YP-208NW, YP-210NW, YP-8NW, YP-10NW and LP-80NW
(combined with VT and CT)

Fig. 8 YP-206NW, YP-208NW, YP-210NW, YP-8NW,
YP-10NW and
LP-80NW
(combined with VT and CT)

Fig. 3 YP-12NW and LP-110NW (combined with CT)

Fig. 6 YP-12NW and LP-110NW
(combined with CT)

Load

Fig. 9 YP-12NW and LP-110NW (combined with CT)

Fig. 13 YP-12NW and LP-110NW (combined with CT)

Fig. 10 YP-12NW and LP-110NW (combined with VT and CT)

-3-phase, 4-wire system

Fig. 11 YP-206NW, YP-208NW, YP-210NW, YP-8NW,
YP-10NW and
LP-80NW
(combined with CT)

Note 1. For low-voltage circuits, grounding of the secondary sides of the instrument voltage transformer and current transformer is unnecessary.

Wattmeter Scale Selection Reference Table

Although the maximum scale of a wattmeter can be determined by VT ratio \times CT ratio \times indicator rating (Po), the following table shows the manufacturable scale values (minimum, standard and maximum) for various VT ratios and CT ratios.
If a scale value other than the standard value is desired, please specify a suitable scale within the manufacturable range.
-Table of manufacturable maximum scales for wattmeters
\square : Scale units kW

Phase-wire system		1-phase 2-wire			$\begin{array}{\|c\|} \hline \text { 1-phase 3-wire } \\ \hline 100 / 200 \\ \hline \end{array}$	3-phase 3-wire/3-phase 4-wire								
	Voltage	110	220	440		110	220	440	3300	6600	11000	22000	33000	66000
CT ratio	cr/va/s/ VT ratio	-	220/110	440/110	-	-	220/110	440/110	$\begin{array}{r} 3300 \\ / 110 \\ \hline \end{array}$	$\begin{aligned} & 6600 \\ & / 110 \\ & \hline \end{aligned}$	$\begin{gathered} 11000 \\ / 110 \end{gathered}$	$\begin{gathered} 22000 \\ / 110 \\ \hline \end{gathered}$	$\begin{gathered} 33000 \\ 1110 \end{gathered}$	$\begin{gathered} 66000 \\ / 110 \\ \hline \end{gathered}$
25/5	Minimum	2	4	8	4	4	8	15	120	240	400	800	1200	2400
	Standard	2.5	5	10	5	5	10	20	150	300	500	1000	1500	3000
	Maximum	3	6	12	6	6	12	25	180	350	600	1200	1800	3500
50/5	Minimum	4	8	15	8	8	15	30	240	450	800	1500	2400	4500
	Standard	5	10	20	10	10	20	40	300	600	1000	2000	3000	6000
	Maximum	6	12	25	12	12	25	50	350	750	1200	2500	3500	7500
75/5	Minimum	6	12	24	12	12	24	45	350	700	1200	2400	3500	7000
	Standard	7.5	15	30	15	15	30	60	450	900	1500	3000	4500	9000
	Maximum	9	18	35	18	18	35	75	500	1000	1800	3500	5000	10
100/5	Minimum	8	15	30	15	15	30	60	450	900	1500	3000	4500	9000
	Standard	10	20	40	20	20	40	80	600	1200	2000	4000	6000	12
	Maximum	12	24	50	24	25	50	100	750	1500	2500	5000	7500	15
150/5	Minimum	12	24	45	24	24	45	90	700	1400	2400	4500	7000	14
	Standard	15	30	60	30	30	60	120	900	1800	3000	6000	9000	18
	Maximum	18	35	75	35	35	75	150	1000	2000	3500	7500	10	20
200/5	Minimum	16	30	60	30	30	60	120	900	1800	3000	6000	9000	18
	Standard	20	40	80	40	40	80	160	1200	2400	4000	8000	12	24
	Maximum	25	50	100	50	50	100	180	1500	3000	5000	10	15	30
300/5	Minimum	24	45	90	45	45	90	180	1400	2800	4500	9000	14	28
	Standard	30	60	120	60	60	120	240	1800	3600	6000	12	18	36
	Maximum	35	75	150	75	75	150	300	2000	4000	7500	15	20	40
400/5	Minimum	30	60	120	60	60	120	250	1800	3800	6000	12	18	38
	Standard	40	80	160	80	80	160	320	2400	4800	8000	16	24	48
	Maximum	50	100	180	100	100	180	350	3000	6000	10	18	30	60
600/5	Minimum	45	90	180	90	90	180	380	2800	6000	9000	18	28	60
	Standard	60	120	240	120	120	240	480	3600	7200	12	24	36	72
	Maximum	75	150	300	150	150	300	600	4000	8500	15	30	40	85
800/5	Minimum	60	120	250	120	120	250	500	3800	7500	12	25	38	75
	Standard	80	160	320	160	160	320	640	4800	9600	16	32	48	96
	Maximum	100	180	350	180	180	350	750	6000	12	18	35	60	120
1200/5	Minimum	90	180	380	180	180	380	750	6000	12	18	38	60	120
	Standard	120	240	480	240	240	480	960	7200	14	24	48	72	140
	Maximum	150	300	600	300	300	600	1200	8500	18	30	60	85	180
1500/5	Minimum	120	240	450	240	240	450	900	7000	14	24	45	70	140
	Standard	150	300	600	300	300	600	1200	9000	18	30	60	90	180
	Maximum	180	350	750	350	350	750	1500	10	20	35	70	100	200
2000/5	Minimum	160	300	600	300	300	600	1200	9000	18	30	60	90	180
	Standard	200	400	800	400	400	800	1600	12	24	40	80	120	240
	Maximum	240	500	1000	500	500	1000	1800	15	30	50	100	150	300
3000/5	Minimum	240	450	900	450	450	900	1800	14	28	45	90	140	280
	Standard	300	600	1200	600	600	1200	2400	18	36	60	120	180	360
	Maximum	350	750	1500	750	750	1500	3000	20	40	75	150	200	400

Note 1. Some of the maximum scale values in the table deviate from the VT ratio $\times \mathrm{CT}$ ratio \times adjustment range multiplying factor. This is because the best values are selected, and the values in the table are given priority.

YP－208NVAR

YP－10NVAR

															cta	gula	indica											
											－2N	eries											－N S	Serie				
Size	（wi	dth \times height）	mm			64×					85×					100					82×					102×	102	
Mod	del n	ame				－206	NVAR				－208	NVAR				－210	NVAR				P－8N	VAR				P－10N	NVAR	
Ope	ratio	principle									Transd	ucer											rans	duce				
Acc	urac	（grade）									2.5													5				
Fre	quen															and	60Hz											
Sca	le le	ngth	（mm）			55					70					8					70					90		
Wei	ght		（kg）			0.0					0.					0.					0.1					0.1		
	$\begin{aligned} & \stackrel{\rightharpoonup}{亏} \\ & \text { 흐 } \end{aligned}$	Secondary rating	Indicator rating （Po）kvar		$\begin{array}{\|l\|} \hline \text { umptii } \\ \hline \text { Curren } \\ \hline \mathrm{I}_{1} \\ \mathrm{I}_{3} \\ \hline \end{array}$	In VA ciruit				$\begin{array}{\|c\|} \hline \text { Curren } \\ \hline \mathrm{I}_{1} \\ \mathrm{I}_{3} \\ \hline \end{array}$	$\begin{array}{\|l\|} \text { on } \mathrm{VA} \\ \hline \text { Itircuit } \\ \hline \mathrm{I}_{2} \\ \hline \end{array}$				$\begin{array}{\|l\|} \hline \text { Curren } \\ \hline \mathrm{I}_{1} \\ \mathrm{I} 3 \\ \hline \end{array}$	V VA circuit I 2				$\begin{array}{\|l\|} \hline \text { Curren } \\ \hline \mathrm{I}_{1} \\ \hline 13 \\ \hline \end{array}$	$\begin{gathered} \text { on VA } \\ \hline \text { tircuit } \\ \hline \mathrm{I}_{2} \end{gathered}$					$\begin{array}{\|l\|} \text { on } \mathrm{VA} \\ \hline \text { It circuit } \\ \hline \mathrm{I}_{2} \\ \hline \end{array}$		응
융	${ }_{0}^{0}$	110V 5A	0．8～1．2	1.6	0.5	1.0	T－150	\bigcirc	1.6	0.5	1.0	T－150	\bigcirc	1.6	0.5	1.0	T－150	\bigcirc	1.6	0.5	1.0	T－150	\bigcirc	1.6	0.5	1.0	T－150	\bigcirc
$\begin{aligned} & \text { 䧺 } \end{aligned}$	¢⿳亠丷厂犬）	220V 5A	1．6～2．4	3.2	0.5	1.0	T－150	\bigcirc	3.2	0.5	1.0	T－150	\bigcirc	3.2	0.5	1.0	T－150	\bigcirc	3.2	0.5	1.0	T－150	\bigcirc	3.2	0.5	1.0	T－150	\bigcirc
枈	\％	$\frac{110}{\sqrt{3}} / 110 \mathrm{~V} 5 \mathrm{~A}$	0．8～1．2	1.6	0.5	1.0	T－150	\bigcirc	1.6	0.5	1.0	T－150	\bigcirc	1.6	0.5	1.0	T－150	\bigcirc	1.6	0.5	1.0	T－150	\bigcirc	1.6	0.5	1.0	T－150	\bigcirc
		110／190V 5A	1．4～2．0	2.8	0.5	1.0	T－150	\bigcirc	2.8	0.5	1.0	T－150	\bigcirc	2.8	0.5	1.0	T－150	\bigcirc	2.8	0.5	1.0	T－150	\bigcirc	2.8	0.5	1.0	T－150	\bigcirc
Page with outer dimensions drawing																			36									

Remarks（1）The varmeters are bidirectional deflection indicators．Unidirectional deflection indicators can be manufactured upon request．
（2）In regards to＂Indicator rating（Po）kvar＂in the＂Rating＂column：
3－phase， 3 －wire $\left\{\begin{array}{l}\mathrm{Po}=\sqrt{3} \times 110 \mathrm{~V} \times 5 \mathrm{~A}=953 \simeq 1 \mathrm{kvar} \quad(\mathrm{Po}=0.8 \text { to } 1.2 \mathrm{kvar} \text { ，taking into account adjustment range multiplying factors of } 0.8 \text { to } 1.2) \\ \mathrm{P}\end{array}\right.$ varmeters $\quad\left\{\begin{array}{l}\text { Po }=\sqrt{3} \times 220 \mathrm{~V} \times 5 \mathrm{~A}=1906 \simeq 2 \mathrm{kvar}\end{array} \quad(\mathrm{Po}=1.6\right.$ to 2.4 kvar, taking into account adjustment range multiplying factors of 0.8 to 1.2$)$
 varmeters $\quad \mathrm{Po}=3 \times 110 \mathrm{~V} \times 5 \mathrm{~A}=\sqrt{3} \times 190 \mathrm{~V} \times 5 \mathrm{~A}=1650 \simeq 1.7 \mathrm{kvar} \quad(\mathrm{Po}=1.4$ to 2.0 kvar ，taking into account adjustment range multiplying factors of 0.8 to 1.2$)$
（3）Regarding the maximum scale of a varmeter
－With a bidirectional deflection indicator，the left side is LEAD and the right side is LAG with respect to＂zero＂as the central division，and the standard scale indicates up to $1 / 2$ of the maximum scale value．A scale indicating up to the maximum scale value can also be manufactured．
－With a unidirectional deflection indicator（with＂zero＂at the left end），the scale indicates up to the maximum scale value．Please specify LEAD or LAG；the standard is LAG．
（4）Models with a 1A current rating；can also be manufactured；the power consumption is basically the same as that of a 5A model．
（5）The T－150 rectifier is a dedicated accessory（non－compatible accessory），and thus cannot be used in combinations other than those designated for the indicators．The distance between the indicator and the T－150 rectifier must be 5 m or less，or the round－trip lead wire resistance must be 0.5Ω or less．
（6）Use a varmeter with an input voltage in the range of 85 to 115% of the rated value（rated voltage $\pm 15 \%$ ）．
The indication may be unstable when used with an input voltage of 85% or less of the rating or the input voltage is switched on and off．
（7）The weight of the T－150 rectifier is approximately 1 kg ．
（8）Please make sure to read the＂Safety Precautions＂（pp．5－8）and the＂Selection Precautions＂（p．9）to assist in selecting the model and use specifications suited to the application．

OScale calculation formula for varmeter

Phase－wire system	Secondary rating	Scale calculation formula for varmeter	Remarks
3 －phase 3－wire	110 V 5A	Indicator scale P（kvar）$=$ VT ratio \times CT ratio \times Po（0．8～1．2）$\times 1 / 2$	－The value at the left is multiplied by $1 / 5$ in the case of a CT secondary current of 1 A ．
	220 V 5A	Indicator scale P（kvar）$=$ CT ratio \times Po（1．6～2．4）$\times 1 / 2$	
3－phase 4－wire	$\frac{110}{\sqrt{3}} / 110 \mathrm{~V}$ 5A	Indicator scale $\mathrm{P}(\mathrm{kvar})=\mathrm{VT}$ ratio \times CT ratio $\times \mathrm{Po}(0.8 \sim 1.2) \times 1 / 2$	
	110／190V 5A	Indicator scale $\mathrm{P}(\mathrm{kvar})=\mathrm{VT}$ ratio $\times \mathrm{CT}$ ratio $\times \mathrm{Po}(1.4 \sim 2.0) \times 1 / 2$	

Calculation example：In the case of a 3－phase，3－wire circuit，VT 6600／110V and CT 100／5A，and a bidirectional deflection indicator with a scale indicating up to $1 / 2$ the maximum scale value．

Indicator scale P（kvar）$=\frac{6600}{110} \times \frac{100}{5} \times$ Po $(0.8 \sim 1.2) \times 1 / 2=480 \sim 720 \mathrm{kvar}$
The manufacturable range of the varmeter scale is thus LEAD（ 480 to 720 ）～ $0 \sim$ LAG（ 480 to 720 ）kvar．
The manufacturable range differs slightly according to the rating．For details，refer to the＂Varmeter Scale Selection Reference
Table＂（p．60）．

Specifications

				Rectangular indicators					Wide－angle indicators									
				Y－N Series					L－N Series									
	Size（width \times height）$\quad \mathrm{mm}$			122×122					80×80					110×110				
Mod	del n	ame		YP－12NVAR					LP－80NVAR					LP－110NVAR				
Op	ratio	n principle		Transducer					Transducer									
Accuracy（grade）				1.5					2.5					1.5				
				100							124					175		
Weight				0.5							0.3					0.6		
$\begin{array}{\|l\|} \hline \text { 흒 } \end{array}$		Rating		Consumption VA			$\begin{aligned} & \text { तò } \\ & 00 \\ & 000 \\ & \text { } \end{aligned}$		Consumption VA			Y		Consumption VA			$\begin{aligned} & \text { N} \\ & \text { ì } \\ & \stackrel{0}{0} \\ & \text { O} \end{aligned}$	
	苛				Current circuit					Current circuit					Current circuit			
	O	Secondary rating	Indicator rating （Po）kvar		$\begin{aligned} & \mathrm{I}_{1} \\ & \mathrm{I} 3 \end{aligned}$	12				$\begin{aligned} & \mathrm{I}_{1} \\ & \mathrm{I}_{3} \end{aligned}$	12				$\begin{aligned} & \mathrm{I}_{1} \\ & \mathrm{I}_{3} \end{aligned}$	12		
응	$\stackrel{\otimes}{\circ}$	110V 5A	0．8～1．2	1.6	0.5	1.0	－	\bigcirc	1.6	0.5	1.0	T－150	\bigcirc	1.6	0.5	1.0	－	\bigcirc
$\begin{aligned} & \text { ed } \\ & \text { ed } \end{aligned}$	¢户ें ${ }^{\text {m }}$	220V 5A	1．6～2．4	3.2	0.5	1.0	－	\bigcirc	3.2	0.5	1.0	T－150	\bigcirc	3.2	0.5	1.0	－	\bigcirc
毞	®	$\frac{110}{\sqrt{3}} / 110 \mathrm{~V} 5 \mathrm{~A}$	0．8～1．2	1.6	0.5	1.0	－	\bigcirc	1.6	0.5	1.0	T－150	\bigcirc	1.6	0.5	1.0	－	\bigcirc
		110／190V 5A	1．4～2．0	2.8	0.5	1.0	－	\bigcirc	2.8	0.5	1.0	T－150	\bigcirc	2.8	0.5	1.0	－	\bigcirc
Page with outer dimensions drawing				36					37									

Delivery period classification

Symbol	OStandard product	OQuasistandard product	\triangle Special product
Reterencedediver period	Immediate delivery	Within 20 days	21 to 60 days

Outer dimensions of accessory

Ordering method

Varmeters

Connection diagrams

-3-phase, 3-wire system

Fig. 1 YP-206NVAR, YP-208NVAR, YP-210NVAR, YP-8NVAR, YP-10NVAR and LP-80NVAR (combined with CT)

Fig. 3 YP-12NVAR and LP-110NVAR (combined with CT)

Fig. 2 YP-206NVAR, YP-208NVAR, YP-210NVAR, YP-8NVAR, YP-10NVAR and LP-80NVAR (combined with VT and CT)

Fig. 4 YP-12NVAR and LP-110NVAR (combined with VT and CT)

Fig. 6 YP-206NVAR, YP-208NVAR, YP-210NVAR, YP-8NVAR, YP-10NVAR and LP-80NVAR (combined with VT and CT)

Fig. 8 YP-12NVAR and LP-110NVAR (combined with VT and CT)

[^0]
Varmeter Scale Selection Reference Table

Although the maximum scale of a varmeter can be determined by VT ratio \times CT ratio \times indicator rating (Po), the following table shows the manufacturable scale values (minimum, standard and maximum) for various VT and CT ratios.
If a scale value other than the standard scale value is desired, specify a suitable scale within the manufacturable range.

- Table of manufacturable maximum scales for varmeters

\square When the indicator scale of a bidirectional deflection indicator is to indicate

Remarks (1) The standard indicator rating (Po) is 1 kvar.
(2) For CT ratio scales not shown in the above table, multiply the ten-fold CT ratio scale values by 0.1 and the $1 / 10$ CT ratio scale values by 10 .

Note 1. Some of the maximum scale values in the table deviate from the VT ratio \times CT ratio \times adjustment range multiplying factor. This is because the best values are selected, and the values in the table are given priority.

For balanced circuits

Specifications

YP-12NPF

LP-110NPF

			Rectangular indicators				Wide-angle indicators							
			Y-N Series				L-N Series							
Size (width \times height) $\quad \mathrm{mm}$			122×122				80×80				110×110			
Model name			YP-12NPF				LP-80NPF				LP-110NPF			
Operation principle			Transducer				Transducer							
Accuracy (grade)			5				5							
Scale			LEAD 0.5~1~0.5 LAG				LEAD 0.5~1~0.5 LAG							
Frequency			1-phase 2 -wire: specify 50 Hz or 60 Hz 3 -phase 3 -wire: 50 and 60Hz				1-phase 2-wire: specify 50 Hz or 60 Hz 3 -phase 3 -wire: 50 and 60 Hz							
Scale length (mm)			100				124				175			
Weight (kg)			0.4				0.4				0.5			
	Circuit	Rating	Consumption VA				Consumption VA				Consumption VA			
				Current circuit				Current circuit				Current circuit		
			$\begin{aligned} & \text { ® } \\ & \frac{\mathrm{O}}{8} \end{aligned}$	11			夢	11				11		
	1-phase 2-wire	110 V 5A	1.3	0.5	-	\triangle	-				1.3	0.5	-	\triangle
		220 V 5 A	2.6	0.5	-	\triangle					2.6	0.5	-	\triangle
	3-phase 3-wire	110 V 5 A	1	1	-	O	1	1	-	\bigcirc	1	1	-	()
	balanced circuit	220 V 5A	2	1	-	\bigcirc	2	1	-	\bigcirc	2	1	-	\bigcirc
Page with outer dimensions drawing			36				37							

Remarks (1) Indicators with a LEAD 0-1-0 LAG scale can also be manufactured; however, measured values for Delivery period classification power factors of 0.5 or less are for reference only.
(2) Use with an input current of $1 / 5$ (e.g. 1A) or more of the rated current (e.g. 5A). The error increases as the input current decreases.
(3) In a power OFF or no-load state, the pointer of the power factor meter stops at the mechanical zero point; black point near the power factor of 1 .

(4) The T-100 rectifier is a dedicated accessory (non-compatible accessory), and thus cannot be used in combinations other than those designated for the indicators.
(5) Models with a current rating of 1A can also manufactured; the power consumption is basically the same as that of a 5A model.
(6) Four-quadrant power factor meters can also be manufactured for LI-1NPF 3-phase, 3-wire balanced circuits. Please contact a Mitsubishi Electric representative for details.
(7) The weight of the $\mathrm{T}-100$ rectifier is approximately 0.9 kg
(8) Cannot use with unbalanced loads.
(9) Please specify the frequency in the case of the power factor meter for 1-phase, 2-wire systems.
(10) Use with a positive phase sequence.
(11) In the case of a negative phase sequence input with a 3 -phase, 3 -wire circuit, LEAD and LAG are indicated in an inverted manner. Indicators return to normal operation when the connections of the P2 and P3 circuits of the voltage input terminals are interchanged
(12) Please make sure to read the "Safety Precautions" (pp.5-8) and the "Selection Precautions" (p.9) to assist in selecting the model and use specifications suited to the application.

Ordering method

The items in \square must be specified. \quad Number of

Outer dimensions of accessory
T-100 rectifier (for balanced circuit power factor meter)

Connection diagrams
-1-phase, 2-wire systems

Fig. 2 YP-12NPF and LP-110NPF (combined with VT and CT)

-3-phase, 3-wire systems

Fig. 6 YP-206NPF, YP-208NPF and YP-210NPF
(combined with VT and CT)

Fig. 4 LP-80NPF and LP-110NPF (combined with CT)
 (combined with VT and CT)

Fig. 5 YP-8NPF, YP-10NPF and YP-12NPF (combined with CT)

Fig. 8 YP-8NPF, YP-10NPF and YP-12NPF
(combined with VT and CT)

Note 1. For low-voltage circuits, grounding of the secondary sides of the instrument voltage transformer and current transformer is unnecessary.

Power Factor Meters

For unbalanced loads

YP-208NPFU

YP-10NPFU

			Rectangular indicators																								
			Y-2N Series															Y-N Series									
Size (width \times height) $\quad \mathrm{mm}$			64×60					85×75					100×85					82×82					102×102				
Mod	del name		YP-206NPFU					YP-208NPFU					YP-210NPFU					YP-8NPFU					YP-10NPFU				
Ope	eration principle		Transducer															Transducer									
Acc	curacy (grade)		5															5									
Sca			LEAD 0.5~1~0.5 LAG															LEAD 0.5~1~0.5 LAG									
Fre	quency		50 or 60 Hz															50 or 60 Hz									
Sca	ale length	(mm)	55					70					85					70					90				
We	ight	(kg)	0.07					0.1					0.1					0.1					0.15				
	Circuit	Rating			$n \mathrm{VA}$ circuit 12				$\begin{array}{\|c\|} \hline \text { sumpt } \\ \hline \text { Curee } \\ \hline \mathrm{I}_{1} \\ \mathrm{I}_{3} \\ \hline \end{array}$	$\begin{gathered} \text { on } \mathrm{VA} \\ \text { tcircuit } \\ \hline \mathrm{I}_{2} \end{gathered}$				$$	$\begin{aligned} & \frac{2 \mathrm{nV}}{\text { circuit }} \\ & \mathrm{I}_{2} \end{aligned}$				$$	$\begin{aligned} & \text { on VA } \\ & \text { circuit } \\ & \mathrm{I}_{2} \end{aligned}$				$\begin{array}{\|l\|} \text { umptic } \\ \hline \text { Curren } \\ \hline \mathrm{I}_{1} \\ \mathrm{I}_{2} \\ \hline \end{array}$	n VA circuit I_{2}		
-	3-phase 3-wire	110 V 5A	1	2		T-150	\bigcirc	1	2		T-150	\bigcirc	1	2		T-150	\bigcirc	1	2		T-150	\bigcirc	1	2		T-150	\bigcirc
-	unbalanced loads	220 V 5A	2	2		T-150	\bigcirc	2	2		T-150	\bigcirc	2	2		T-150	\bigcirc	2	2		T-150	\bigcirc	2	2		T-150	\bigcirc
年	3-phase	$\frac{110}{\sqrt{3}} / 110 \mathrm{~V} 5 \mathrm{~A}$	0.7	1	2	T-150	\bigcirc	0.7	1	2	T-150	\bigcirc	0.7	1	2	T-150	\bigcirc	0.7	1	2	T-150	\bigcirc	0.7	1	2	T-150	\bigcirc
	4-wire	110/190V 5A	1	1	2	T-150	\bigcirc	1	1	2	T-150	\bigcirc	1	1	2	T-150	\bigcirc	1	1	2	T-150	\bigcirc	1	1	2	T-150	\bigcirc

Remarks (1) A LEAD 0~1~0 LAG scale can also be manufactured; however, the measured power factor values of 0.5 or less are for reference only.
(2) Please specify the frequency.
(3) Use with an input current of $1 / 5$ (e.g. 1A) or more of the rated current (e.g. 5A). The error increases as the input current decreases.
(4) In the power off or no-load state, the needle of the power factor meter stops at the mechanical zero point; black point near the power factor of 1 .
(5) The T-150 rectifier is a dedicated accessory (non-compatible accessory), and thus cannot be used in combinations other than those designated for the indicators. The distance between the indicator and the T-150 rectifier must be 5 m or less, or the round-trip lead wire resistance must be 0.5Ω or less.
(6) Models with a current rating of 1A can also manufactured; the power consumption is basically the same as that of a 5A model.
(7) The weight of the T-150 rectifier is approximately 1.4 kg .
(8) Can also be used for balanced circuits.
(9) Use with a positive phase sequence.

For the following models, indicators will not be function normally when a negative-phase sequence is input. Return the indicators to normal operation by interchanging the voltage and current circuits.

Model name	Indication state	Reset indicator for normal operation
YP-206NPFU, YP-208NPFU	The indicator reading is unclear.	Change the voltage and current circuit connections
YP-210NPFU		as follows:
YP-8NPFU, YP-10NPFU		- Switch P1 and P3
LP-80NPFU		Switch +C1 and +C3
		- Switch C1 and C3

(10) Please make sure to read the "Safety Precautions" (pp.5-8) and the "Selection Precautions" (p.9) to assist in selecting the model and use specifications suited to the application.

Ordering method

Delivery period classification

Symbol	Standard product	OQuasistandard product	\triangle Special product
Reterencedediver period	Immediate delivery	Within 20 days	21 to 60 days

Outer dimensions of accessories

Fig. 1 T-150 rectifier (for 3-phase, 3-wire unbalanced load power factor meter)

Fig. 2 T-150 rectifier (for 3-phase, 4-wire power factor meter)

Power Factor Meters

Connection diagrams

-3-phase, 3-wire systems (unbalanced loads)

Fig. 1 YP-206NPFU, YP-208NPFU, YP-210NPFU, YP-8NPFU, YP-10NPFU and LP-80NPFU (combined with CT)

Fig. 2 YP-206NPFU, YP-208NPFU, YP-210NPFU,

Fig. 3 YP-12NPFU and LP-110NPFU (combined with CT)

-3-phase, 4-wire systems
Fig. 5 YP-206NPFU, YP-208NPFU, YP-210NPFU, YP-8NPFU, YP-10NPFU and LP-80NPFU

Fig. 7 YP-12NPFU and LP-110NPFU (combined with CT)

YP-8NPFU, YP-10NPFU and LP-80NPFU (combined with VT and CT)

Fig. 4 YP-12NPFU and LP-110NPFU
(combined with VT and CT)

Fig. 6 YP-206NPFU, YP-208NPFU, YP-210NPFU,
YP-8NPFU, YP-10NPFU and LP-80NPFU
(combined with VT and CT)

Fig. 8 YP-12NPFU and LP-110NPFU (combined with VT and CT)

[^1]

Remarks (1) Allowable voltage variation ranges for 110V: 90~130V; for 220V: 180~260V.
(2) The mechanical zero point of the needle is the black point at the left end of the meter (see scale example below).
(3) Please make sure to read the "Safety Precautions" (pp.5-8) and the "Selection Precautions" (p.9) to assist in selecting the model and use specifications suited to the application.

Delivery period classification

Symbol	OStandard product	OQuasi-standard product	\triangle Special product
Reterencedediveryperiod	Immediate delivery	Within 20 days	21 to 60 days

Connection diagrams

Fig. 1 Frequency meter (direct)

Fig. 2 Frequency meter (combined with CT)

Note 1. For low-voltage circuits, grounding of the secondary side of the instrument voltage transformer is unnecessary.

Ordering method

The items in	must be specified.				
Model name	Rated voltage	Scale	Cover type	Special specifications	Number of units
YP-208NF	110 V	$55-65 \mathrm{~Hz}$	B	Colored lines, colored bands, etc.	10

\square Receiving Indicators

Receiving indicators indicate the quantity measured when an electrical signal is received from the transmitter of a detector of a power/instrumentation transducer. Receiving indicators are used to measure industrial quantities, including remote measurements.

Specifications
ODC indicators

Note 1. A 500Ω internal resistance indicator can also be manufactured for models with indicator ratings of 1 mA Delivery period classification and $\pm 0.5 \mathrm{~mA}$.
Please specify an internal resistance of 500Ω.
Note 2. In the case of scales with units of electricity (A, V, W, var, cosø, Hz), AC/DC and three-phase circuit symbols are not displayed. For receiving indicators, the symbol for the quantity input is displayed.

Symbol	Standard product	OQuasistandard product	\triangle Special product
Referencededinery period	Immediate delivery	Within 20 days	21 to 60 days

Remarks (1) With a zero-suppressed indicator, the zero point of the needle is suppressed mechanically to eliminate the zero point. Zero-suppressed indicators can be manufactured for values of 20% or lower of the maximum rating of the indicator.
(2) For cases when the indicator input is DC voltage, an indicator with an adjustment resistor, where the adjustment resistor is added internally to the indicator, can be manufactured. (This type can be used in combination with specific scales.)

- The range of adjustment by the adjustment resistor is $\pm 5 \%$ to $\pm 20 \%$ with respect to the maximum scale value.
- The adjustment resistor is mounted on the rear face (i.e., face with terminals) of the indicator.
(3) rpm detectors and other industrial quantity detectors are to be prepared by the customer.
(4) Please make sure to read the "Safety Precautions" (pp.5-8) and the "Selection Precautions" (p.9) to assist in selecting the model and use specifications suited to the application.

－AC indicators

						Rectangu	dicators			Wide－an	indicators
					Y－2N Series			Y－N Series			ries
Size（width \times height）			mm	64×60	85×75	100×85	82×82	102×102	122×122	80×80	110×110
Model name				YR－206NRI	YR－208NRI	YR－210NRI	YR－8NRI	YR－10NRI	YR－12NRI	LR－80NRI	LR－110NRI
Operation principle				Rectifier			Rectifier			Rectifier	
Accuracy（grade）				2.5			2.5		1.5	2.5	1.5
Scale length			mm）	55	70	85	70	90	100	124	175
든		Indicator rating	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \hline \text { periorod } \end{array}$	Consumption current，consumption VA，or voltage drop							
$\stackrel{\boxed{0}}{6=1}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \text { D⿳亠二口欠 } \\ & \text { U } \\ & \text { U } \end{aligned}$	$200,300 \mu \mathrm{~A}$	\triangle	－	1．7V		1.7 V		1.7 V	－	
$\begin{aligned} & \text { 苋 } \\ & \stackrel{y}{0} \end{aligned}$		$500 \mu \mathrm{~A}, 1,3,5 \mathrm{~mA}$	\triangle	1.4 V	1.4 V		1.4 V		1.4 V	1.4 V	
은		10，20，30，50，75mA	\triangle	1.2 V	1.2 V		1.2 V		1.2 V		
$\begin{aligned} & \bar{\circ} \\ & \stackrel{1}{2} \end{aligned}$		100，200， 500 mA	\triangle	0.06 VA	0.06 VA		0.06 VA		0.06 VA	0.06 VA	
$\frac{\stackrel{\rightharpoonup}{0}}{\stackrel{\rightharpoonup}{0}}$		1，3A	\bigcirc	0.06 VA	0.06 VA		0.06 VA		0.06 VA	0.06 VA	
$\stackrel{\circ}{0}$		5，10，15，20A	\bigcirc	0．1VA	0．1VA		0．1VA		0．1VA	0．1VA	
	－	$\frac{5,10,30,50 \mathrm{~V}}{75,100 \mathrm{~V}}$	\bigcirc	1 mA	1 mA		1 mA		1 mA	1 mA	
	$\begin{aligned} & \overline{9} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 150 \mathrm{~V} \\ & 300 \mathrm{~V} \end{aligned}$	\bigcirc	2 mA	2 mA		2 mA		2 mA	2 mA	
Page with outer dimensions drawing				35			36				

Remarks（1）Industrial quantity detectors are to be prepared by the customer．
（2）Please make sure to read the＂Safety Precautions＂（pp．5－8）and the＂Selection Precautions＂（p．9）to assist in selecting the model and use specifications suited to the application．

Connection examples

Fig． 1 Remote measurement of DC current

Fig． 2 Remote measurement of AC current

Delivery period classification

Symbol	OStandard product	OQuasistandard product	\triangle Special product
Reterencededieryperiod	Immediate delivery	Within 20 days	21 to 60 days

Fig． 3 Measurement of temperature（resistance bulb）

Note 1．Use a shielded wire or twisted wire for connectiing the transducer or other components to the indicator．

－Scale units of receiving indicators（representative examples）

Element	Scale units		Element	Scale units		Element		Scale units \％	Element		
DC／AC current	A	kA	Active power	kW	MW		rcent		Speed	meters／minute	$\mathrm{m} / \mathrm{min}$
						Temperature		${ }^{\circ} \mathrm{C}$		meters／second	m / s
DC／AC voltage	V	kV	Reactive power	kvar	Mvar	Length	centimeters	cm		evolutions	min^{-1}
							meters	m		Pressure	MPa
Frequency	Hz		Power factor	$\cos \phi$		Weight	kilograms	kg		Flow rate	L／min
			tons			t		ncentration	ppm		

Models with various types of units besides the above can also be manufactured．

Ordering method

The items in \square must be specified．

\square Indicators with Changeover Switch

AC ammeters

Using AC ammeters with changeover switches, the currents of the respective phases of a 3phase, 3-wire system (or 1-phase, 3-wire system) circuit can be measured by a single meter. - Equipped with a protective circuit to protect the CT secondary circuit.

YR-8UNAA

YR-10UNAA

Specifications

Size (width \times height) mm					82×99		102×119		122×139	
Model name					YR-8UNAA		YR-10UNAA		YR-12UNAA	
Operation principle					Rectifier (movable iron core) Note 1				Rectifier	
Accuracy (grade)					2.5		2.5		1.5	
Frequency					50 and 60 Hz					
Scale length (mm)					70		90		100	
Weight			(kg)		0.2		0.25		0.4	
-	Direct	Terminal contiguration	Maximum scale	Consumption VA	Ordinary	Expanded	Ordinary	Expanded	Ordinary	Expanded
:		4-terminal	1A	0.2	\triangle	\triangle	\triangle	\triangle	\triangle	\triangle
bex			5A		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\triangle
$\begin{aligned} & \text { 힐 } \\ & \hline \text { 2 } \end{aligned}$			10A		\triangle	\triangle	\triangle	\triangle	\triangle	\triangle
			15A							
및			20A	0.3	\triangle	\triangle	\triangle	\triangle	\triangle	\triangle
은			30A							
$\begin{aligned} & \text { 흐를 } \\ & \text { 흘 } \end{aligned}$	Combined with CT	3 -terminal Note 2	$2 \mid$	1.5	(\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

Note 1. With YR-8UNAA and 10UNAA, the 3-terminal-combined-with-CT model is of the movable iron core type.
Note 2. The 4-terminal configuration can be manufactured for models combined with CT. Please designate as " 4 -terminal." However, the operation principle will be the rectifying type.
Remarks (1) A switch nameplate for 1 -phase, 3-wire systems can be manufactured. Please specify "with 1-3 nameplate."
Nameplate examples: OFFRNS OFFRNT Make sure to specify the indication contents when
Delivery period classification

Symbol	OStandard product	Quasi-standard product	\triangle Special product
Referencededivery period	Immediate delivery	Within 20 days	21 to 60 days

(2) Expanded scale refers to scales expanded three-fold.
(3) Supplementary anti-corrosion treatment is not possible.
(4) Please make sure to read the "Safety Precautions" (pp.5-8) and the "Selection Precautions" (p.9) to assist in selecting the model and use specifications suited to the application.

Outer dimensions

Fig. 1 YR-8UNAA

Fig. 2 YR-10UNAA

Fig. 3 YR-12UNAA

Connection diagrams

Note 3. For low-voltage circuits, grounding of the secondary side of the current transformer is unnecessary.

Ordering method

The items in \square must be specified.

Model name	Indicator rating	Terminal configuration	Scale	CT ratio	Cover type	Special specifications
YR-8UNAA	5A	4-terminal	0-100A	100/5A	BR	With 1-3 nameplate, colored lines, colored bands, etc.
		$\begin{aligned} & \text { Spec } \\ & \text { confi } \end{aligned}$	fy if 4-termina uration is req	—— Unne	y in the ca dicator.	

AC voltmeters

Using AC voltmeters with changeover switches, the voltages between the respective wires of a 3-phase, 3-wire system (or 1-phase, 3-wire system) circuit can be measured by a single meter.
-Equipped with a protective circuit to protect the VT secondary circuit.

Specifications
YR-8UNAV
YR-10UNAV

Size (width \times height) mm					82×99	102×119	122×139
Model name					YR-8UNAV	YR-10UNAV	YR-12UNAV
Operation principle					Rectifier		
Accuracy (grade)					2.5	2.5	1.5
Frequency					50 and 60 Hz		
Scale length			(mm)		70	90	100
Weight			(kg)		0.15	0.2	0.4
	Direct	Maximum scale		$\begin{array}{\|c\|c\|} \hline \text { Consumption } \\ \text { VA } \end{array}$	Delivery period classification		
		150 V		0.5	\bigcirc	\bigcirc	\bigcirc
		300 V		1.2	((()
		600 V		2.4	\bigcirc	\bigcirc	\bigcirc
	Combined with VT	VT ratio	Scale	0.5	\bigcirc	\bigcirc	\bigcirc
		440/110V	0-600V				
		3300/110V	0-4500V				
		6600/110V	0-9000V				
		besides the above, $\mathrm{\square} 110 \mathrm{~V}$	VT ratio $\times 150 \mathrm{~V}$	0.5	\bigcirc	\bigcirc	\bigcirc

Remarks (1) In the case of a 1-phase, 3-wire system circuit (100/200V), use a model rated at 300 V direct.
(2) A switch nameplate for 1 -phase, 3 -wire systems can be manufactured. Please specify "with 1-3 nameplate."
Nameplate examples: OFF R-N N-S R-S OFF R-N N-T R-T Make sure to specify the indication contents when ordering.
(3) Supplementary anti-corrosion treatment is not possible.

Delivery period classification

Symbol	Standard product	OQuasistandard product	\triangle Special product
Reterencededieryperiod	Immediate delivery	Within 20 days	21 to 60 days

(4) Please make sure to read the "Safety Precautions" (pp.5-8) and the "Selection Precautions" (p.9) to assist in selecting the model and use specifications suited to the application.

Outer dimensions

Fig. 1 YR-8UNAV

Fig. 2 YR-10UNAV

Fig. 3 YR-12UNAV

Connection diagrams

Fig. 1 Direct

Fig. 2 Combined with VT

Note 1. For low-voltage circuits, grounding of the secondary side of the instrument voltage transformer is unnecessary.

Ordering method

Demand meters measure electricity demand and have marker needles that display the maximum and/or minimum values measured.

LB-11ZNAA
(AC current demand meter with max. value marker needle)

LB-11ZRMNAA (AC current demand meter relay)

Telemetry measurement (remote measurement) is possible
Receiving indicators can be combined with various transducers to perform remote measurement.

Terminal cover (standard equipment)

Conducting parts are protected to prevent electrical shock.

		Demand meters					Demand meter relays
		With max. value needle		With max. and min. value marker needles	With max. value marker needle and instantaneous meter	With max. and min. value marker needles and instantaneous meter	With max. value marker needle and instantaneous meter, with alarm setting needle
Appearance							
Size (width \times height)		80×80	110×110				
AC ammeters		LB-8ZNAA	LB-11ZNAA	-	LB-11ZRNAA	-	LB-11ZRMNAA
AC voltmeters		LB-8ZNAV	LB-11ZNAV	-	-	LB-11YRNAV	-
Wattmeters	1-phase, 2-wire	-	LB-11ZNW	LB-11YNW	LB-11ZRNW	LB-11YRNW	-
	1-phase, 3-wire						
	3-phase, 3-wire						
	3-phase, 4-wire						
Receiving indicators		-	LB-11ZNRI	LB-11YNRI	LB-11ZRNRI	LB-11YRNRI	-

-Demand meter needles

-Demand meter relay needles

Mechanical Demand meter and demand meter relay usage precautions
(1) Precautions concerning overload

As malfunctions may occur when an overload input is applied continuously, select a rating that does not cause the demand meter indicator to exceed the scale.
(2) Instantaneous meters do not have a zero adjuster (when combined with an indicator). In addition, demand meter relays do not have a zero adjuster for either demand meters (driving needle) or instantaneous meters.
(3) Although the demand-meter-relay alarm setting needle (yellow) follows the driving needle (black), when the driving needle exceeds the preset alarm value, the alarm setting needle returns to the original state (setting value) when the driving needle returns to the alarm setting value or less.
(4) The demand-meter-relay contact output turns off regardless of the state when the auxiliary power supply is interrupted and returns to normal operation immediately after power is restored.
(5) When transporting a demand meter relay, make sure to move the setting needle (yellow) to 70% or more of the maximum scale value.
(The contact adjustment value may change or a malfunction may occur due to vibration or shock during transport if the needle is close to the zero point.)
(6) When the ambient temperature changes suddenly, the zero point of the demand meter may change (1 to 2 mm) temporarily. However, this will return to normal after a few hours.
(7) To reset electromagnetic marker needles, use a switch that "opens" when released. In addition, set the duration of electricity supply to the reset terminal to within five seconds. The maximum/minimum value marker needles can be moved to the position of the driving needle manually or by resetting the electromagnetic marker needle.

AC ammeters/AC voltmeters

-AC ammeters Time intervals: 2, 5,10 and 15 minutes

(LB-8ZNAA: 2 and 15 minutes)

- The demand current and instantaneous current can be measured and maximum demand current can be recorded. AC ammeters can also be used for load monitoring; for example, monitoring the load of voltage transformers or feeders.
-AC voltmeters Time interval: 2 minutes
- The average and instantaneous voltages can be measured, and maximum and minimum voltages can be recorded. AC voltmeters can also be used to monitor voltage fluctuation in low-voltage bus

LB-11ZRNAA
(with max. value marker needle and instantaneous meter)

LB-11YRNAV
(with max. and min. value marker needles and instantaneous meter)
lines and high-voltage circuits.

Specifications

Remarks (1) The instantaneous meter of the AC ammeter has an ordinary scale.
(2) The scale of the instantaneous meter of the AC voltmeter is magnified for the rated voltage range from approx. 80 V to 150 V .
(3) Please make sure to read the "Safety Precautions" (pp.5-8) and the "Selection Precautions" (p.9) to assist in selecting the model and use specifications suited to the application.

Outer dimensions

Fig. 1 LB-8ZNAA and LB-8ZNAV

Fig. 2 LB-11ZNAA, LB-11ZRNAA, LB-11ZNAV and LB-11YRNAV

-Ordering method

The items in \square must be specified.
Model name \qquad
Delivery period classification

Symbol	OStandard product	OQuasistandard product	\triangle Special product
Reterencedediveryperiod Immediate delivery	Within 20 days	21 to 60 days	

Connection diagrams

Fig. 1 AC current demand meter

Fig. 2 AC voltage demand meter

Note 1. Connect if an electromagnetic marker needle reset circuit is to be provided. Additionally, use a switch that "opens" when released.
Note 2. For low-voltage circuits, grounding of the secondary sides of the instrument voltage transformer and current transformer is unnecessary.

Wattmeters/Receiving indicators

-Wattmeters Time intervals: 2 and 15 minutes

-The electricity demand, instantaneous electricity and maximum electricity demand can be recorded. In addition, wattmeters can be used to monitor transformer load and electricity.
-Receiving indicators Time intervals: 2 and 15 minutes

- Receiving indicators are used in combination with various electrical transducers or instrumentation transducers, such as those for measuring temperature, to perform telemeter measurements (remote measurement).

Specifications

LB-11YRNW
(with max. and min. value marker needles and instantaneous meter)

LB-11YNRI (with max. and min. value marker needles)

Indicator type			Wattemeters							Receiving indicators															
Model name			LB-11ZNW	LB-11YNW		LB-11ZRNW		LB-11YRNW		LB-11ZNRI		LB-11YNRI		LB-11ZRNRI		LB-11YRNRI									
Needles	Marker needles	Max. value	\bullet	\bullet		\bullet		\bullet		\bullet		-		-		\bullet									
		Min. value	-	\bullet		-		\bullet		-		\bullet		-		\bullet									
	Instantaneous meter		-	-		-		\bullet		-		-		-		\bullet									
Operation principle			Bimetal (Movable coil instantaneous meter) + transducer							Bimetal (Movable coil instantaneous meter)															
Accuracy (driving needle) (grade)			1.5							1.5															
Frequency			50 and 60 Hz							-															
Scale length (mm)	Demand meter		150							150															
	Instantaneous meter		-			50				-				50											
Time interval (min)			$2 \quad 15$	2	15	2		2	15	2	15	2	15	2	15	2	15								
Phasewire	Input		Indicator rating (Po)			Consumption VA				Indicator rating															
			Voltage circuit	11, 13		12																			
1-phase 2-wire	110 V	5A				0.4~0.6kW			$3{ }^{3}$			-	1 mA DC Internal resistance: $1 \mathrm{k} \Omega$												
	220 V	5A	0.8~1.2kW			6 6-2			-																
3-phase	110 V	5A	0.8~1.2kW			$3 \mathrm{l\mid l}$			-																
3-wire	220 V	5A	1.6~2.4kW			6 6-2			-																
3-phase 4-wire	$\frac{110}{\sqrt{3}} / 11$	0V5A	0.8~1.2kW			1 1.2			2.4																
	110/19	OV 5A	1.4~2.0kW			1.5	1.		2.4																
	220/38	OV 5A	2.8~4.0kW			1.5 1.2			2.4																
Marker needle reset			Manual and electromagnetic reset (electromagnetic reset rating: 100-110VAC/DC $\pm 10 \%$); consumption VA: approx. 5VA																						
Accessories	Mode	name	T-150 rectifier/T-150LB DC amplifier							T-150LB DC amplifier															
	Auxiliary p	wer supply	$110 \mathrm{VAC}_{-15}^{+10} \%$; 50 and 60 Hz ; consumption VA: approx. 12VA							$110 \mathrm{VAC}_{-15}^{+10} \%$; 50 and 60 Hz ; consumption VA: approx. 12VA															
Main body weight (kg)			1.2	1.4		1.4		1.5		1.2		1.4		1.4		1.5									
Delivery period classification			\triangle	\triangle																					

Remarks (1) Refer to the "Wattmeter Scale Selection Reference Table" (p.56) regarding the manufacturable maximum scale value of a wattmeter
(2) The T-150 rectifier and T-150LB DC amplifier are dedicated accessories (non-compatible). They can only be used in combination with the indicators specified. The distance between the indicator and the T-150LB DC amplifier/T-150 rectifier must be 5 m or less, or the round trip lead wire resistance must be 0.5Ω or less.
(3) Wattmeters cannot be manufactured with both positive and negative readings on the scale.

For receiving indicators with a positive/negative scale, use a transducer to convert positive/negative input to positive output (e.g., convert input of $-1,000$ to 0 to $+1,000 \mathrm{~W}$ to output of 0 to 0.5 to 1 mA).
(4) For scales that measure in electrical units (A, V, W, var, $\cos \varnothing, \mathrm{Hz}$), $\mathrm{AC} / \mathrm{DC}$ and three-phase circuit symbols are not displayed. For receiving indicators, the symbol for the quantity to be input is displayed.
(5) Please make sure to read the "Safety Precautions" (pp.5-8) and the "Selection Precautions" (p.9) to assist in selecting the model and use specifications suited to the application.

Outer dimensions

Ordering method

The items in \square must be specified.

	Model name	Phase-wie sysiem	Indicator rating	Time interval	Scale	VT ratio	CT ratio	Cover type	Special specifications	Number of units
-Wattmeter	LB-11ZNW	3P3W	$110 \mathrm{~V} 5 \mathrm{~A}$	2M	0-600kW	6600/110V	50/5A	B	Colored lines, colored bands, etc.	2
	Model name	Indicator rating	Time interval Scale		Cover type	Special specifications				Number of units
- Receiving	LB-11ZNRI		2 M	-100) A	B	uble scale, col lines, etc.				2

Delivery period classification

Symbol	OStandard product	OQuasistandard product	\triangle Special product
Reierencedediery period	Immediate delivery	Within 20 days	21 to 60 days

Outer dimensions of accessories

Fig. 1 T-150 rectifier (for wattmeter)

Note. 3-phase, 3-wire system shown in this figure. The number and layout of terminals differ according to the phase-wire system.

Fig. 2 T-150LB DC amplifier

Note. LB-11ZNW and YNW and the LB-11ZNRI and YNRI types do not have a METER terminal.

Wattmeter connection diagrams

Fig. 1 LB-11ZNW and LB-11YNW (1-phase, 2-wire system)

Fig. 3 LB-11ZNW and LB-11YNW (3-phase, 3-wire system)

Fig. 5 LB-11ZNW and LB-11YNW (3-phase, 4-wire system)

Fig. 2 LB-11ZRNW and LB-11YRNW (1-phase, 2-wire system)

Fig. 4 LB-11ZRNW $\underset{T-150}{ }$ and rectifier -11 YRNW (3-phase, 3-wire system)

Fig. 6 LB-11ZRNW and LB-11YRNW (3-phase, 4-wire system)

Note 1. Connect if an electromagnetic marker needle reset circuit is to be provided. Additionally, use a switch that "opens" when released.
Note 2. For low-voltage circuits, grounding of the secondary sides of the instrument voltage transformer and current transformer is unnecessary.

Connection examples of receiving indicators

DC current telemetry measurement example

AC current telemetry measurement example

AC active power telemetry measurement example

Note 1. Connect when an electromagnetic reset circuit is installed. Additionally, use a switch that opens when disconnected.
Note 2. For low-voltage circuits, secondary-side connections of current transformers/meter transformers are not required.

Mechanical Demand Meter Relays

AC ammeters

Time intervals: 10 and 15 minutes; the 10 -minute model complies with the Fundamental Specifications for Electrical Construction of the Ministry of Land, Infrastructure, Transport and Tourism of Japan.

- These indicators are used to measure electricity demand and have a marker needle that displays the maximum value measured, which is used to output an alarm signal.
-AC ammeters can be used to measure electricity demand such as at electric power substations.
-Provided with relay operation indication (LED).

Specifications

Delivery period classification

Symbol	OStandard product	OQuasi-standard product	\triangle Special product
Reterencecedeliey period	Immediate delivery	Within 20 days	21 to 60 days

Outer dimensions

LB-11ZRMNAA
Needle and relay contact operations

Needle state	State of contacts
When the driving needle is at or below the setting needle.	\square
When the driving needle pushes the max. value marker needle up and reaches the setting needle.	and the
When input decreases and the driving needle drops to or below the setting needle.	\square

Remarks The indicator lamp (red LED) lights up when the relay contacts a-c are ON.

Connection diagram

Note 1. Connect if an electromagnetic marker needle reset circuit is to be provided. Additionally, use a switch that "opens" when released.
Note 2. For low-voltage circuits, grounding of the secondary side of the current transformer is unnecessary.

-Ordering method

The items in \square must be specified.

Model name	Indicator rating	Time interval	Scale	CT ratio	Cover type	Special specifications
LB-11ZRMNAA	5A	10M	0-200A	200/5A	B	Colored lines, colored bands, etc.

Demand Meters/Demand Meter Relays

Time interval and indications of demand meters

-The time interval (to) of a demand meter refers to the time required for an indicated value (lo) to indicate 95% of a fixed input (I) when the input (I) is supplied continuously. Additionally, for 100% of the input (I) to be indicated, a time of approximately 3 times the time interval (t) is required.

-For mechanical demand meters or demand meter relays, a coiled bimetal is heated by the input current and the thermal change of the bimetal is used for the indication (bimetal). The indicated value is the effective value of the input.
-For electronic demand meters or demand meter relays, the same characteristics are realized via computation using a microcomputer.

Selecting the time interval of demand meters

- The time interval of a demand meter is selected according to the facility equipment to be monitored and the purpose of monitoring.
(Demand meter selection example)

Meter relays enable alarms to be issued and automatic control based on contact outputs at the same time as measurement of voltage, current and other items.

Abstract

Sustained-output models covering the entire scale Sustained-output needle-pass relays are incorporated, enabling output over the entire scale range to be covered.

100/200VAC switching auxiliary power supply
Can be used with either 100-110VAC or 200-220VAC.
Equipped with relay operation indication lamp
The operating state of the relay can be seen, even from a distance.

Products list

					Upper/Lower-limit setting				Upper-limit setting			
					Rectangular indicator		Wide-angle indicator		Rectangular indicator		Wide-angle indicator	
Size (width \times height)				mm	100×83		110×110		100×83		110×110	
Scale length (mm)					72		183		72		183	
Indicator				Operation principle	Model name	Accessory						
0	Ammeter			Movable coil	YM-210MRNDA	-	LM-11MRNDA	-	YM-210MRHNDA	-	LM-11MRHNDA	-
	Voltmeter			Movable coil	YM-210MRNDV	-	LM-11MRNDV	-	YM-210MRHNDV	-	LM-11MRHNDV	-
Ammeter				Rectifier	YR-210MRNAA	-	LR-11MRNAA	-	YR-210MRHNAA	-	LR-11MRHNAA	-
Voltmeter				Rectifier	YR-210MRNAV	-	LR-11MRNAV	-	YR-210MRHNAV	-	LR-11MRHNAV	-
O	Wattmeter		1-phase 2-wire	Transducer	YM-210MRNW	T-150	LM-11MRNW	T-150	YM-210MRHNW	T-150	LM-11MRHNW	T-150
			3-phase 3 -wire		YM-210MRNW	T-150	LM-11MRNW	T-150	YM-210MRHNW	T-150	LM-11MRHNW	T-150
			3-phase 4-wire		YM-210MRNW	T-150	LM-11MRNW	T-150	YM-210MRHNW	T-150	LM-11MRHNW	T-150
	Varmeter		3-phase 3-wire	Transducer	YM-210MRNVAR	T-150	LM-11MRNVAR	T-150	YM-210MRHNVAR	T-150	LM-11MRHNVAR	T-150
			3-phase 4-wire		YM-210MRNVAR	T-150	LM-11MRNVAR	T-150	YM-210MRHNVAR	T-150	LM-11MRHNVAR	T-150
	Power factor meter		3 -phase 3 -wire (balanced)	Transducer	YM-210MRNPF	T-100	LM-11MRNPF	T-100	YM-210MRHNPF	T-100	LM-11MRHNPF	T-100
			3-phase 3-wire (unbalanced)		YM-210MRNPFU	T-150	LM-11MRNPFU	T-150	YM-210MRHNPFU	T-150	LM-11MRHNPFU	T-150
			3-phase 4-wire		YM-210MRNPFU	T-150	LM-11MRPNFU	T-150	YM-210MRHNPFU	T-150	LM-11MRHNPFU	T-150
	Frequency meter			Transducer	YM-210MRNF	T-100	LM-11MRNF	T-100	YM-210MRHNF	T-100	LM-11MRHNF	T-100
Receiving indicator				Movable coil	YM-210MRNRI	-	LM-11MRNRI	-	YM-210MRHNRI	-	LM-11MRHNRI	-
	Output signal				Sustained output							
								Pointer pa	sing type			
			Type		Upper limit (H): red; Lower limit (L): green				Upper limit (H): red			
			Minimum setting width		5\% of scale length							
			Setting range	e Upper limit	5~100\%		10~100\%		5~100\%		10~100\%	
				Lower limit	0~95\%		0~90\%		-		-	
		Pickup value			$\pm 1.5 \%$ or less							
			Rated voltage		100-110VAC/200-220VAC switching type							
			Allowable voltage variation range		100-110VAC terminal: 90-120VAC							
					200-220VAC terminal: 180-240VAC							
			Consumption VA		3.6VA or less		4VA or less		3.6VA or less		4VA or less	
		Contact capacity		Resistive load	250VAC 3A		250VAC 3A		250VAC 3A		250VAC 3A	
				30VDC 3A, 100VDC 0.2A	30VDC 3A, 100VDC 0.2A		30VDC 3A, 100VDC 0.2A		30VDC 3A, 100VDC 0.2A			
				Inductive load	250VAC 2A		250VAC 0.3A		250VAC 2A		250VAC 0.3A	
		Contact configuration			Upper limit (H), lower limit (L): no-voltage C contacts				Upper limit (H): no-voltage C contact			
	Withstand voltage (between terminal and case)				$2210 \mathrm{VAC}, 5 \mathrm{sec}$ (between input terminal and relay contact terminal: 1200VAC, 1 min)							
	Usage temperature range				$-5^{\circ} \mathrm{C} \sim 50^{\circ} \mathrm{C}$ (reference: $23^{\circ} \mathrm{C}$)							

Operation principles

ONon-contact detection

Non-contact detection occurs when the needle reaches the meter relay pick-up value or drop-out value, and is based on changing to the state where the light beam is shielded. For this reason, a protective plate is attached to the needle axis.

OSwitching circuit/Output relay section

The signal from the non-contact detection section is amplified via the switching circuit, activating the output relay.

ONames of components

Lower-limit setting knob (green)
Lower-limit operation indication lamp (green)
Upper-limit operation indication lamp (red)
Needle Upper-limit setting needle

OUpper/Lower-limit operation indication light.

This light turns on as soon as the value set as the upper/lower-limit is reached and stays lit as long as this state is maintained.

ONeedle position and output relay operation

	Lower-limit setting value or less	Between upperllower-Imit setting values	Upper-limit setting value or more
Needle position			
Contact operation mode of the lower-limit output relay (a contact example) $\begin{aligned} & \text { ON } \\ & \text { OFF }\end{aligned}$,		C	c-b
Contact operation mode of the upper-limit output relay$\begin{array}{ll} \text { (a contact example) } & \begin{array}{l} \text { ON } \\ \text { OFF } \end{array} \end{array}$	$+\square$		

Remarks The needle position across the entire scale can be indicated by combining the contacts of the lower-limit and upper-limit output relays as shown in the diagram below.

Outer dimensions

Fig. 1 YM-210MRN and YM-210MRHN YR-210MRN and YR-210MRHN
(The lower-limit setting needle, the lower-limit setting knob, the lower limit LED, and the LOW output terminals are not provided for YM-210MRHN and YR-210MRHN.

Fig. 2 LM-11MRN and LM-11MRHN
LR-11MRN and LR-11MRHN
(The lower-limit setting needle, the lower-limit setting knob, the lower-limit LED, and the LOW output terminals are not provided for LM-11MRHN and LR-11MRHN.

M4 terminal screw

LM-11MRN, LM-11MRHN LR-11MRN, LR-11MRHN Terminal layout diagrams
-Depth dimensions

Model	Depth dimension (mm)
LM-11MRN, LM-11MRHN	146
LR-11MRN, LR-11MRHN	159

Note 1. A cover with red needle cannot be manufactured.

DC ammeters

YM-210MRNDA

LM-11MRNDA

Specifications

				Rectangular indicators		Wide-angle indicators	
				Upper/Lower-limit setting	Upper-limit setting	Upper/Lower-limit setting	Upper-limit setting
Size (width \times height)			mm	100×83		110×110	
Model name				YM-210MRNDA	YM-210MRHNDA	LM-11MRNDA	LM-11MRHNDA
Operation principle				Movable coil		Movable coil	
Accuracy (grade)				2.5		1.5	
Scale length			(mm)	72		175	
Weight			(kg)	0.7		1.8	
	Maximum scale value		Delivery period	Internal resistance (Ω) or consumption current			
	Direct	1 mA	\bigcirc	70Ω		650Ω	
		10 mA	\bigcirc	3Ω		7Ω	
		20 mA	\bigcirc	2.5Ω		10Ω	
		1,3,5A	\bigcirc	$60 \mathrm{mV}(10 \mathrm{~mA})$		$100 \mathrm{mV}(10 \mathrm{~mA})$	
	Combined with shunt	1~7500A	\bigcirc	60 mV (10 mA)		$100 \mathrm{mV}(10 \mathrm{~mA})$	

Note 1. In the case of combined use with a shunt, please refer to the table below and specify the lead wire thickness and Delivery period classification one-way length or the round trip resistance.
Remarks (1) In the case of a bidirectional deflection indicator, determine the specifications according to the following.

- In the case of a direct rating model, manufacture is possible if the larger of the right and left scales is 5A or less
- In the case where a shunt is externally attached, determine the scale so that the sum of the absolute values of

Symbol	OStandard product	Quasi-standard product	\triangle Special product
Réerence delivery period	Immediate delivery	Within 20 days	21 to 60 days

Example: In the case of a shunt rating of 500 A and 60 mV
Ammeter scale -500~0~+500A
Ammeter rating -60~0~+60mV (sum of absolute values $=120 \mathrm{mV} \geq 60 \mathrm{mV}$)
(2) Please make sure to read the "Safety Precautions" (pp.5-8) and the "Selection Precautions" (p.9) to assist in selecting the model and use specifications suited to the application.

Table of maximum allowable values of lead wires for DC ammeter relay combined with shunt

DC ammeter relay combined with shunt		
Model name	Indicator rating (mV)	Maximum allowable resistance value of lead wire (Ω)
YM-210MRNDA	60 or more, less than 75	0.73
	75 or more, less than 100	1.16
	100 or more, less than 150	1.88
	150 or more	3.33
LM-11MRNDA	100 or more, less than 150	1.50
LM-11MRHNDA	150 or more	2.59

Remarks (1) Refer to "DC ammeter combined with shunt" on p. 44 regarding the round trip resistance according to the lead wire thickness and one-way length.

Connection diagram

Fig. 1 YM-210MRNDA and LM-11MRNDA

Lead wires for shunt connection

Lead wires for connecting an indicator with a shunt can be manufactured if specified.
The standard is: two $\mathbf{2 m m} \mathbf{m}^{\mathbf{-}} \mathbf{2 m}$ (one-way) $\mathbf{1 5 0 0 V}$ heat-resistant vinyl wires (blue) for electric equipment.
Remarks (1) The customer is requested to prepare wires besides those of $2 \mathrm{~mm}^{2}$ cross-sectional area.

Ordering method

The items in \square must be specified.

OIndicator combined with shunt
 required

Thickness and length of lead wire + required/not-required Lead wire $2 \mathrm{~mm}^{2} 3 \mathrm{~m}$, not required

Special specifications Double scale, colored \qquad units units 2

DC voltmeters

Specifications

YM-210MRNDV

LM-11MRNDV

			Rectangular indicators		Wide-angle indicators	
			Upper/Lower-limit setting	Upper-limit setting	Upper/Lower-limit setting	Upper-limit setting
Size (width \times height) $\quad \mathrm{mm}$			100×83		110×110	
Model name			YM-210MRNDV	YM-210MRHNDV	LM-11MRNDV	LM-11MRHNDV
Operation principle			Movable coil		Movable coil	
Accuracy (grade)			2.5		1.5	
Scale length		(mm)	72		175	
Weight		(kg)	0.7		1.8	
은	Maximum scale value	Delivery	Consumption current			
흥	$\begin{gathered} 1,50,100 \mathrm{~V} \\ 150,300,500 \mathrm{~V} \end{gathered}$	\bigcirc	1 mA		1 mA	

Remarks (1) If, with a maximum scale of 500 V or less, an externally mounted multiplier is desired, the GR-2 multiplier can be attached as an accessory.
(2) In the case of a bidirectional deflection indicator, manufacture is possible if the larger of the right and left scales is 500 V or less.
(3) Please make sure to read the "Safety Precautions" (pp.5-8) and the "Selection Precautions" (p.9) to

Delivery period classification

Symbol	Standard product	OQuasistandard product	\triangle Special product
Referencededilieryperiod	Immediate delivery	Within 20 days	21 to 60 days

Connection diagram

Fig. 1 YM-210MRNDV and LM-11MRNDV (direct)

YM-210MRHNDV and LM-11MRHNDV do not have LOW terminals.

Fig. 2 YM-210MRNDV and LM-11MRNDV (with GR-2 multiplier)

YM-210MRHNDV and LM-11MRHNDV do not have LOW terminals.

Outer dimensions of accessory

Ordering method

\square Meter Relays

AC ammeters

YR-210MRNAA

LR-11MRNAA

				Rectangular indicators				Wide-angle indicators			
				Upper/Lower-limit setting		Upper-limit setting		Upper/Lower-limit setting		Upper-limit setting	
Size (width \times height) $\quad \mathrm{mm}$				100×83				110×110			
Model name				YR-210MRNAA		YR-210MRHNAA		LR-11MRNAA		LR-11MRHNAA	
Operation principle				Rectifier				Rectifier			
Accuracy (grade)				2.5				1.5			
Frequency				50 and 60 Hz							
Scale length (mm)				72				175			
Consumption VA (VA)				0.2				0.1 (0.3 in the case of expanded scale)			
Weight				0.7				1.8			
	Maximum scale value			Ordinary	Expanded	Ordinary	Expanded	Ordinary	Expanded	Ordinary	Expanded
	Direct	100, 200, 500 mA		\triangle							
			1,5,10A								
	$\begin{aligned} & \text { Ł } \\ & 0 \\ & 3 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 5 / 5,10 / 5, \\ & 75 / 5,100 \\ & 300 / 5,400 \end{aligned}$	$\begin{aligned} & / 5,20 / 5,30 / 5,40 / 5,60 / 5 \\ & 150 / 5,200 / 5,250 / 5 \\ & 500 / 5 \end{aligned}$	\bigcirc	\triangle	\bigcirc	\triangle	\bigcirc	\triangle	\bigcirc	\triangle
	츧	Other	15 A (indicator rating 5A)	\bigcirc	\triangle	\bigcirc	\triangle	\bigcirc	\triangle	\bigcirc	\triangle
	\bigcirc		/1A (indicator rating 1A)	\triangle							

Remarks (1) The standard expanded scale is the $3 x$ expanded scale. A $2 x$ expanded scale and $5 x$ expanded scale can also be manufactured.
(2) Error may occur due to waveform distortion.
(3) Please make sure to read the "Safety Precautions" (pp.5-8) and the "Selection Precautions" (p.9) to assist in selecting the model and use specifications suited to the application.

Delivery period classification

Symbol	OStandard product	OQuasi-standard product	\triangle Special product
Reterencedediveryperiod	Immediate delivery	Within 20 days	21 to 60 days

Connection diagram
Fig. 1 YR-210MRHNAA and LR-11MRHNAA

Fig. 3 YR-210MRHNAA and LR-11MRHNAA

Fig. 4 YR-210MRNAA and LR-11MRNAA

Note 1. In a low voltage circuit, grounding of the secondary side of the current transformer is unnecessary.

Ordering method

The items in \square must be specified.

AC voltmeters

Specifications

YR-210MRNAV

LR-11MRNAV

				Rectangular indicators				Wide-angle indicators			
				Upper/Lower-limit setting		Upper-limit setting		Upper/Lower-limit setting		Upper-limit setting	
Size (width \times height) $\quad \mathrm{mm}$				100×83				110×110			
Model name				YR-210MRNAV		YR-210MRHNAV		LR-11MRNAV		LR-11MRHNAV	
Operation principle				Rectifier				Rectifier			
Accuracy (grade)				2.5				1.5			
Frequency				50 and 60 Hz							
Scale length			(mm)	72				175			
Weight			(kg)	0.7				1.8			
	Maximum scale value			Consumption VA and delivery period classification							
				Consumption VA	Deliver period cassificaion	Consumption VA	Deliver peitiod cassificaion	Consumption VA	Delivery period cassificaion	Consumption VA	Delivery period cassificaion
		10,	, 50V	0.3VA	\bigcirc	0.3VA	\bigcirc	0.1VA	\bigcirc	0.1 VA	\bigcirc
	U		00 V	0.5 VA		0.5 VA		0.1 VA		0.1 VA	
	$\bar{\square}$			0.6 VA	\bigcirc	0.6 VA	\bigcirc	0.15 VA	\bigcirc	0.15 VA	\bigcirc
				1.7VA		1.7VA		0.3 VA		0.3 VA	
	5	VT ratio	Scale	0.6 VA	\bigcirc	0.6 VA	\bigcirc	0.15VA	\bigcirc	0.15VA	\bigcirc
	先	440/110V	0~600V								
	-	3300/110V	0~4500V								
	हो	6600/110V	0~9000V								
	O	Other $\square / 110 \mathrm{~V}$	VT ratio $\times 150 \mathrm{~V}$								

Remarks (1) Error may occur due to waveform distortion.
(2) Please make sure to read the "Safety Precautions" (pp.5-8) and the "Selection Precautions" (p.9) to assist in selecting the model and use specifications suited to the application.

Delivery period classification

Symbol	Standard product	OQuasistandard product	\triangle Special product
Reterencedediverperiod	Immediate delivery	Within 20 days	21 to 60 days

Connection diagram

Fig. 1 YR-210MRHNAV and LR-11MRHNAV

Fig. 3 YR-210MRHNAV and LR-11MRHNAV

Fig. 4 YR-210MRNAV and LR-11MRNAV

Note 1. In a low voltage circuit, grounding of the secondary side of the instrument voltage transformer is unnecessary.

Ordering method

The items in \square must be specified.

Wattmeters

Varmeters

Specifications

YM-210MRNW

LM-11MRNW

Remarks (1) Refer to the "Wattmeter Scale Selection Reference Table" (p.54) concerning the manufacturable maximum scale value of a wattmeter relay.
(2) The varmeter relays are bidirectional deflection indicators with "Zero" as the central division and with LEAD at the left side and LAG at the right side. Refer to the "Varmeter Scale Selection Reference Table" ($p .60$) concerning the manufacturable maximum scale value of a varmeter relay.
(3) Unidirectional deflection indicators can also be manufactured for varmeter relays. Please specify LEAD or LAG (standard is LAG).
(4) 1 A current rating models are also manufactured (the consumption VA is similar to that of a 5 A model).
(5) The T-150 rectifier is a dedicated accessory (non-compatible accessory) and thus cannot be used in combinations besides those specified for the indicators. The distance between the indicator and the $\mathrm{T}-150$ rectifier must be 5 m or less or the round trip lead wire resistance must be 0.5Ω or less.
(6) The weight of the T-150 rectifier is approximately 1 kg .
(7) Please make sure to read the "Safety Precautions" (pp.5-8) and the "Selection Precautions" (p.9) to assist in selecting the model and use specifications suited to the application.

Ordering method

The items in \square must be specified.

Outer dimensions of accessory
T-150 rectifier (for wattmeter or varmeter relay)

-Terminal layouts

$\begin{aligned} & +1-1-1 \\ & \text { ourvor } \end{aligned}$

Fig. 1 For 1-phase, 2-wire system wattmeter

Fig. 3 For 3-phase, 4-wire system wattmeter

Fig. 2 Wattmeter relay (3-phase, 3-wire system)

Fig. 3 Wattmeter relay (3-phase, 4-wire system)

Fig. 4 Varmeter relay (3-phase, 3-wire system)

Fig. 5 Varmeter relay (3-phase, 4-wire system)

Note 1. YM-210MRHNW, LM-11MRHNW, YM-210MRHNVAR, and LM-11MRHNVAR do not have LOW terminals.
Note 2. For low-voltage circuits, grounding of the secondary sides of the instrument voltage transformer and current transformer is unnecessary.

Power factor meters

Specifications

YM-210MRNPF

LM-11MRNPF

			Rectangular indicators										Wide-angle indicators											
			UpperlLower-Imim seting			Upper-limit setting		Upper/Lower-limit setting			Upper-limit setting		UpperlLower-limit setting\|			Upper-limit setting		Upper/Lower-IIIit setting			Upper-limit setting			
Siz	(width \times heigh	ht) $\quad \mathrm{mm}$	100×83										110×110											
Mod	del name		YM-210MRNPF			YM-210MRHNPF		YM-210MRNPFU			YM-210MRHNPFU		LM-11MRNPF			LM-11MRHNPF		LM-11MRNPFU			LM-11MRHNPFU			
	ation principle		Transducer										Transducer											
Acc	uracy (grade)		5										5											
Sca			LEAD0.5~1~0.5LAG										LEAD0.5~1~0.5LAG											
Fre	quency		50 and 60 Hz					50 or 60 Hz					50 and 60 Hz					50 or 60 Hz						
Sca	le length	(mm)	72										175											
We	ght	(kg)	0.7										1.8											
	Circuit	Rating	Consumption VA					Consumption VA					Consumption VA			$$		Consumption VA			$\begin{aligned} & \text { Z } \\ & \text { O} \\ & \text { O} \\ & \text { O} \\ & \text { O } \end{aligned}$			
第				Voltage circuit																				
				$\begin{aligned} & \mathrm{I}_{1} \\ & \mathrm{I}_{3} \end{aligned}$	12				$\begin{aligned} & \mathrm{I}_{1} \\ & \mathrm{I} 3 \end{aligned}$	12				$\left.\right\|_{1}$	12				$\begin{aligned} & \mathrm{I}_{1} \\ & \mathrm{I}_{3} \end{aligned}$	12				
2	3-phase 3-wire	110 V 5	1			T-100	\triangle	-			-	-	1			T-100	\triangle	-			-	-		
$\frac{\frac{3}{\bar{y}}}{\underline{y}}$	(balanced)	220V 5A	2		1						2													
\%	3-phase 3-wire	110 V 5	-			-	-	1				T-150	\triangle	-			-	-	1	2		T-150	\triangle	
䂝	(unbalanced)	220 V 5				2				2	2													
흥	3-phase 4-wire	$\frac{110}{\sqrt{3}} / 110 \mathrm{~V} 5 \mathrm{~A}$	-				-	-	2	1	2		T-150	\triangle	-			-	-	2	1	2	T-150	\triangle
흔	(balanced)	110V/190V 5A	-			-	-	2	1	2	T-150	\triangle		-		-	-	2	1	2	T-150	\triangle		

Remarks (1) Use an input current of $1 / 5$ or more than the rated current. The smaller the input current, the larger the error.
(2) 1A current rating models can also be manufactured (the consumption VA is similar to that of a 5 A model).
(3) The T-100 and T-150 rectifiers are dedicated accessories (non-compatible accessories) and thus cannot be used in combinations besides those designated for the indicators.
The distance between the indicator and the T-100 or T-150 rectifier must be 5 m or less or the round trip lead wire resistance must be 0.5Ω or less.
(4) Weight of accessory T-100 rectifier: approx. 1.4 kg

T-150 rectifier: approx. 1.7kg
(5) Please specify the frequency for YM-210MRNPFU and LM-11MRNPFU.
(6) Models for balanced circuits cannot be used with unbalanced loads. Models for unbalanced loads can be used with balanced circuits.
(7) The mounting order for the VT and CT does not have to be considered.
(8) Please make sure to read the "Safety Precautions" (pp.5-8) and the "Selection Precautions" $p .9$) to
Delivery period classification

Symbol	OStandard product	OUusistandard product	\triangle Special product
Reterencedelivery period	Immediate delivery	Within 20 days	21 to 60 days

Outer dimensions of accessory

Connection diagram

Fig. 1 Power factor meter relay (3-phase, 3-wire balanced circuit)

YM-210MRHNPF and LM-11MRHNPF do not have LOW terminals. Fig. 2 Power factor meter relay (3-phase, 3-wire unbalanced loads)

YM-210MRHNPFU and LM-11MRHNPFU do not have LOW terminals Fig. 3 Power factor meter relay (3-phase, 4-wire system)

YM-210MRHNPFU and LM-11MRHNPFU do not have LOW terminals.
Note 1. In a low voltage circuit, grounding of the secondary sides of the instrument voltage transformer and current transformer is unnecessary.

Ordering method

Frequency meters

Specifications

YM-210MRNF

LM-11MRNF

			Rectangular indicators			Wide-angle indicators		
			Upper/Lower-lim		Upper-limit setting	Upper/Lower-lim		Upper-limit setting
Size	(width \times heig	mm	100×83			110×110		
Mod	del name		YM-210M		YM-210MRHNF	LM-11MP		LM-11MRHNF
Ope	ration princip		Transducer			Transducer		
Acc	uracy (grade)			1			1	
Sca	le length	(mm)		72			175	
Wei	ght	(kg)		0.7			1.8	
	Circuit voltage	Scale	Consumption VA	Accessory	Delivery period	Consumption VA	Accessory	Delivery period
	110 V	$45 \sim 55 \mathrm{~Hz}$	1	T-100	\triangle	1	T-100	\triangle
		$55 \sim 65 \mathrm{~Hz}$	1		\triangle	1		\triangle
		$45 \sim 65 \mathrm{~Hz}$	1		\triangle	1		\triangle
	220 V	$45 \sim 55 \mathrm{~Hz}$	1.5		\triangle	1.5		\triangle
		$55 \sim 65 \mathrm{~Hz}$	1.5		\triangle	1.5		\triangle
		$45 \sim 65 \mathrm{~Hz}$	1.5		\triangle	1.5		\triangle
	Special scale		$\begin{gathered} 45 \sim 75 \mathrm{~Hz}, 170 \sim 190 \mathrm{~Hz} \\ 85 \sim 110 \mathrm{~Hz}, 360 \sim 440 \mathrm{~Hz} \end{gathered}$					

Remarks
(1) Allowable operating voltage range - for 110V: 90~130V; for 220V: 180~260V
(2) The T-100 rectifier is a dedicated accessory (non-compatible accessory) and thus cannot be used in combinations besides those specified for the indicators.
The distance between the indicator and the T-100 rectifier must be 5 m or less or the round trip lead wire resistance must be 0.5Ω or less.

Delivery period classification

Symbol	OStandard product	OQuasistandard product	\triangle Special product
Reterencedediveryperiod	Immediate delivery	Within 20 days	21 to 60 days

(3) Weight of accessory T-100 rectifier: approx. 0.9 kg
(4) Please make sure to read the "Safety Precautions" (pp.5-8) and the "Selection Precautions" (p.9) to assist in selecting the model and use specifications suited to the application.

Outer dimensional drawings of accessory

Connection diagram

Note 1. In a low voltage circuit, grounding of the secondary side of the instrument voltage transformer is unnecessary.

Ordering method

The items in \square must be specified.

Model name	Rated voltage	Scale	Cover type	Special specifications	Number of units
YM-210MRNF	110 V	$55-65 \mathrm{~Hz}$	B	Colored lines, colored bands, etc.	2

Receiving indicators

Specifications

YM-210MRNRI

LM-11MRNRI

				Rectangular indicators		Wide-angle indicators	
				Upper/Lower-limit setting	Upper-limit setting	Upper/Lower-limit setting	Upper-limit setting
Size (width \times height)			mm	100×83		110×110	
Model name				YM-210MRNRI	YM-210MRHNRI	LM-11MRNRI	LM-11MRHNRI
Operation principle				Movable coil		Movable coil	
Accuracy (grade)				2.5		1.5	
Scale length			(mm)	72		175	
Weight			(kg)	0.7		1.8	
	Indicator rating		Delivery period	Internal resistance (Ω) or consumption current (mA)			
	Current input	$\pm 0.5 \mathrm{~mA}$	\triangle	70Ω		650Ω	
Rex		1 mA	\bigcirc	70Ω		650Ω	
든응		10 mA	\triangle	3Ω		7Ω	
흉흉		4-20mA (zero-suppressed)	\bigcirc	2.5Ω		10Ω	
흔	Voltage input	1, 5, 10V	\bigcirc	1 mA		1 mA	

Remarks (1) Refer to p. 105 onward of this catalog in regard to transducers to be combined with a receiving indicator.
(2) In the case of an electrical quantity scale (A, V, W, var, $\cos \phi, \mathrm{Hz}$), the $\mathrm{AC} / \mathrm{DC}$ symbol and 3-phase circuit symbol are not indicated on the scale. The symbol of the input quantity of the receiving indicator is indicated.
(3) Please make sure to read the "Safety Precautions" (pp.5-8) and the "Selection Precautions" (p.9) to assist in selecting the model and use specifications suited to the application.

Delivery period classification

Symbol	OStandard product	OQuasistandard product	\triangle Special product
Reterencedediveryperiod	Immediate delivery	Within 20 days	21 to 60 days

Connection diagram examples

Fig. 1 Combination with current transducer

Fig. 2 Combination with temperature transducer

Note 1. YM-210MRHNR1 and LM-11MRHNR1 do not have LOW terminals.
Note 2. In a low voltage circuit, grounding of the secondary side of the current transformer is unnecessary.

Ordering method

The items in \square must be specified.

Precautions When Handling Meter Relays

-For meter relays, always keep the auxiliary power supply on. The consequences of turning the auxiliary power supply on/off are described below.

(Note) *Method for restoring normal operation after restoration from power interruption.
Turn the setting knob to move the needle setting in the order of (1), (2) as shown below. After this, reset the needle setting.

Relay output	Lower limit		Upper limit		
Malfunction details	Relay output is ON (when it should be OFF)	Relay output is OFF (when it should be ON)	Relay output is ON (when it should be OFF)	Relay output is	OFF (when it should be ON)
Action	$\square \stackrel{\square}{\stackrel{(2)}{\leftrightarrows}}$	$\stackrel{(2}{\underset{(1)}{\leftrightarrows}} \square \quad \square$	$\nabla \mathbb{V} \stackrel{(2)}{\stackrel{(1)}{\leftrightarrows}} \square$	\square	$D \stackrel{(2)}{\stackrel{(1)}{\leftrightarrows}}$
	Lower limit $\prod_{\text {Needle }}$ Upper limit	Lower limit Upper limit Needle	Lower limit $\prod_{\substack{\text { Needle }}}$ Upper limit	Lower limit	Upper limit Needle

Olf an inrush current that is generated when a motor is started exceeds the setting value even instantaneously, the relay operates during that state.
To prevent unnecessary influence of the relay during such a transition state of the input signal, use a timer to release the output relay terminals for a fixed time during starting to prevent unnecessary operation of a control device.

[^2]
\square Indicators with Maximum and Minimum Needles

These indicators have marker needles indicating the maximum and minimum values. The response time of these indicators is extremely fast.
-The needle response time is 0.1 s (0.3 s for DC input).
-The maximum value marker needle, minimum value marker needle and driving needle are red, green and black, respectively.
-Using the indicators in combination allows the marker needles to be reset to the driving needle both manually and electromagnetically.

LM-11ZNAA

LM-11YNAV

■ Specifications

		DC ammeter			AC ammeter	DC voltmeter	Receiving indicator
Size (width \times height) mm		110×110			110×110	110×110	110×110
	With maximum needle	LM-11ZNDA			LM-11ZNAA	LM-11ZNAV	LM-11ZNRI
	With maximum and minimum needles	LM-11YNDA			LM-11YNAA	LM-11YNAV	LM-11YNRI
	Operation principle	Movable coil			Rectifier		Movable coil
	Accuracy (grade)	1.5 (marker needle: 2)			1.5 (marker needle: 2)		1.5 (marker needle: 2)
	Scale length (mm)	175			175		175
	Marker needle reset	Manual and electromagnetic marker needle reset (electromagnetic marker needle reset voltage: 100-110VAC/DC $\pm 10 \%$); consumption VA: 6 VA					
	Frequency	-			50 or 60 Hz	50 or 60 Hz	-
	Weight (kg)	3.2			3.2	3.2	3.2
$\begin{aligned} & \hline \text { 은 } \\ & \text { 든 } \\ & \text { 으 } \\ & \text { 으 } \\ & \underline{\underline{0}} \\ & \hline \end{aligned}$	Rated voltage or rated current	$\begin{gathered} 5,10,15 \\ 20 \mathrm{~mA} \end{gathered}$	$\begin{gathered} 1,3,5 \\ 10,15 \mathrm{~A} \end{gathered}$	15A Note 1 or more	1, 5, 10, 15, 20, 30A	$\begin{gathered} 100,110,150,190 \\ 259,300 \mathrm{~V} \\ \hline \end{gathered}$	$\begin{gathered} \text { DC } 5 \mathrm{~mA} \\ \text { DC4-20mA } \end{gathered}$
	Consumption VA	$40 \Omega(20 \mathrm{~mA})$	300 mV	300 mV	1VA	5VA	650Ω (DC5mA), 100 ${ }^{\text {(DC4-20mA) }}$
	Response time	0.3 s			0.1 s	0.1 s	0.3 s
	Accessory	-			T-150	T-150	-
Delivery period classification		\triangle			\bigcirc	\bigcirc	\triangle

Note 1. Models with a rating exceeding 15ADC are provided with an externally mounted 300 mV shunt. Additionally, in ordering, please specify the resistance value so that the lead wire round trip resistance value is 0.8Ω or less.

Remarks (1) Refer to $p .90$ and $p .92$ if an $A C$ voltmeter is to be used as a ground voltmeter.
(2) The T-150 rectifier is a dedicated accessory (non-compatible accessory) and thus cannot be used in combinations besides those specified for the indicators. The distance between the indicator and the $\mathrm{T}-150$ rectifier must be 5 m or less or the round trip lead wire resistance must be 0.5Ω or less.
(3) Set the duration of supplying electricity to the electromagnetic marker needle resetting terminal to within 5 s . Additionally, use a switch that "opens" when released.
(4) The overload capacity is 2 times the rated current for 2 s .
(5) For an $A C$ ammeter or $A C$ voltmeter, please specify the frequency.
(6) An expanded scale cannot be manufactured for an AC ammeter.
(7) Do not use with a circuit through which an inrush current or other current that exceeds the rating flows.
(8) Please make sure to read the "Safety Precautions" (pp.5-8) and the "Selection Precautions" (p.9) to assist in selecting the model and use specifications suited to the application.

Outer dimensions

Ordering method

The items in \square must be specified.

- AC ammeter/AC voltmeter

Model name	Indicator rating	Scale	CT ratio or VT ratio	Cover type	Frequency	Special specifications	Number of units
LM-11ZNAA	5A	0-300A	300/5A	B	50 Hz	Colored lines, colored bands, etc.	2

- Receiving indicator

Outer dimensions of accessory

Connection diagrams

Fig. 3 DC ammeter

Fig. 2 AC voltmeter

Note 1. Connect if an electromagnetic marker needle resetting circuit is to be provided. Additionally, use a switch that "opens" when released.
Note 2. In a low voltage circuit, grounding of the secondary sides of the instrument voltage transformer and current transformer is unnecessary.

OUsing LM-11ZNAV or LM-11YNAV AC voltmeter as a ground voltmeter

Shown below are connection examples of the LM-11ZNAV AC voltmeter with the maximum needle (or LM-11YNAV AC voltmeter with maximum/minimum needles) as a ground voltmeter.

\square Earth-leakage Detectors

-An earth-leakage detector detects an earth fault of an ungrounded 3-phase 3-wire circuit and enables the degree of the earth fault and the ground phase to be judged by deflection of a needle.
-With the instrument voltage transformer, a Y connection is formed at the primary side to directly ground the neutral point and a Δ connection with one corner open is formed at the secondary side (or tertiary side).

Specifications

	Wide-angle indicator			
Size (width \times height) mm	110×110			
Model name	LM-11NGD			
Operation principle	Rectifier			
Zero-phase voltage	Vaf $=110 \mathrm{~V}$		Vaf $=190 \mathrm{~V}$	
Indicator rated voltage	63.5V	86.6 V	110V	150V
Frequency	50 or 60 Hz			
Consumption VA	1VA		2VA	
Weight (kg)	0.6			
Accessory	T-150 rectifier			
Delivery period classification	\triangle			

Delivery period classification

Symbol	Standard product	OQuasistandard product	\triangle Special product
Reterencedediverperiod	Immediate delivery	Within 20 days	21 to 60 days

Remarks (1) Please specify the VT ratio of the EVT used in accordance with the following examples. $\frac{6600}{\sqrt{3}} / \frac{110}{\sqrt{3}} / \frac{110}{3} \mathrm{~V}$ (specification example in the case where Vaf $=110 \mathrm{~V}$) $6600, \frac{110}{\sqrt{3}}, \frac{190}{3}$ $\frac{\sqrt{3}}{\sqrt{3}} / \frac{1}{\sqrt{3}} / \frac{100}{3} \mathrm{~V}$ (specification example in the case where Vaf=190V)

Remarks (2) An alarm contact that is activated by the voltage relay when the zero-phase voltage (Vaf) is 50 to 75 V (Vaf= 190 V) is standard equipment. Contact capacity: 100VAC, 1 A (resistive load). (3) In the case of using a VT that is not specially designed as a zero-phase transformer, a harmonics suppressing resistor (dummy load) is connected between open and delta. The resistor is selected according to the load of the voltage transformer and should comply with the following:
$\{200 \mathrm{~W} 200 \Omega(200 \Omega \pm 10 \%)$ when Vaf $=190 \mathrm{~V}\}$
\{150W $120 \Omega(120 \Omega \pm 10 \%)$ when Vaf $=110 \mathrm{~V}$ \}
(4) Be careful of the following matters in using this indicator for telemetry.
(1) Please speciify the resistance value if the lead wire resistance between the rectifier and the meter exceeds 15Ω (one-way).
(2) There are three communicating lines between the rectifier and the meter (not including the alarm circuit), and the differences among the resistance values of these lines must be 15Ω or less.
(5) Please specify the frequency.
(6) Please make sure to read the "Safety Precautions" (pp.5-8) and the "Selection Precautions" (p.9) to assist in selecting the model and use specifications suited to the application.

Ordering method

-Connection and VT ratio of EVT to be combined with a ground voltmeter (LM-11ZNAV or 11-YNAV) and an earth-leakage detector (LM-11NGD) Generally, an EVT with which the zero-phase tertiary voltage in the 1-wire ground state is 110 V (or 190V) is used in a Y Y \triangle (star-star-delta) connection. Although VAf is the input voltage of the ground voltmeter, the respective line voltages of the Δ connection are input in addition to Vaf into an earth-leakage detector.

Note. With an arrangement without the tertiary winding in the above diagram, the voltage at the open end resulting from a secondary winding is considered as the zero-phase tertiary voltage.

- Scales of a ground voltmeter (LM-11ZNAV or 11-YNAV) and an earth-leakage detector (LM-11NGD) and the VT ratio

The earth-leakage detector is used in combination with an $Y Y \triangle$-connected EVT, and this table shows the relationship between the line voltage VL-L and the scale and the VT ratio.

$\begin{gathered} \text { Circuit voltage } \\ \text { V } \\ \text { VL-L } \end{gathered}$	Indicator maximum scale value (V)	VT ratio (examples)			Zero-phase voltage (Vaf)	LM-11ZNAV LM-11YNAV Indicator rating (V)		LM-11NGD	
		When three 1-phase EVTs are used		When one 3-phase EVT is used				Indicator rating	Alarm relay operating
		Without tertiary winding	With tertiary winding	With tertiary winding		When3 unis are combined	In the case of 1 unit	(V)	voltage (V)
440	600	$\frac{440}{\sqrt{3}} / \frac{110}{3}$	$\frac{440}{\sqrt{3}} / \frac{110}{\sqrt{3}} / \frac{110}{3}$	440 / 110 / $\frac{110}{3}$	110	86.6	150	86.6	30~50
		$\frac{440}{\sqrt{3}} / \frac{190}{3}$	$\frac{440}{\sqrt{3}} / \frac{110}{\sqrt{3}} / \frac{190}{3}$	440 / 110 / $\frac{190}{3}$	190	150	259	150	55~75
	440	$\frac{440}{\sqrt{3}} / \frac{110}{3}$	$\frac{440}{\sqrt{3}} / \frac{110}{\sqrt{3}} / \frac{110}{3}$	440 / 110 / $\frac{110}{3}$	110	63.5	110	63.5	30~50
		$\frac{440}{\sqrt{3}} / \frac{190}{3}$	$\frac{440}{\sqrt{3}} / \frac{110}{\sqrt{3}} / \frac{190}{3}$	440 / 110 / $\frac{190}{3}$	190	110	190	110	55~75
3300	4500	$\frac{3300}{\sqrt{3}} / \frac{110}{3}$	$\frac{3300}{\sqrt{3}} / \frac{110}{\sqrt{3}} / \frac{110}{3}$	$3300 / 110$ / $\frac{110}{3}$	110	86.6	150	86.6	30~50
		$\frac{3300}{\sqrt{3}} / \frac{190}{3}$	$\frac{3300}{\sqrt{3}} / \frac{110}{\sqrt{3}} / \frac{190}{3}$	$3300 / 110 / \frac{190}{3}$	190	150	259	150	55~75
	3300	$\frac{3300}{\sqrt{3}} / \frac{110}{3}$	$\frac{3300}{\sqrt{3}} / \frac{110}{\sqrt{3}} / \frac{110}{3}$	$3300 / 110 / \frac{110}{3}$	110	63.5	110	63.5	30~50
		$\frac{3300}{\sqrt{3}} / \frac{190}{3}$	$\frac{3300}{\sqrt{3}} / \frac{110}{\sqrt{3}} / \frac{190}{3}$	$3300 / 110 / \frac{190}{3}$	190	110	190	110	55~75
6600	9000	$\frac{6600}{\sqrt{3}} / \frac{110}{3}$	$\frac{6600}{\sqrt{3}} / \frac{110}{\sqrt{3}} / \frac{110}{3}$	$6600 / 110 / \frac{110}{3}$	110	86.6	150	86.6	30~50
		$\frac{6600}{\sqrt{3}} / \frac{190}{3}$	$\frac{6600}{\sqrt{3}} / \frac{110}{\sqrt{3}} / \frac{190}{3}$	6600 / $110 / \frac{190}{3}$	190	150	259	150	55~75
	6600	$\frac{6600}{\sqrt{3}} / \frac{110}{3}$	$\frac{6600}{\sqrt{3}} / \frac{110}{\sqrt{3}} / \frac{110}{3}$	$6600 / 110 / \frac{110}{3}$	110	63.5	110	63.5	30~50
		$\frac{6600}{\sqrt{3}} / \frac{190}{3}$	$\frac{6600}{\sqrt{3}} / \frac{110}{\sqrt{3}} / \frac{190}{3}$	6600 / $110 / \frac{190}{3}$	190	110	190	110	55~75

- Regarding the indicator rating

Oln the case of combining three LM-11ZNAV (LM-11YNAV) units or in the case of LM-11NGD - The indicator rating is the line voltage at the Δ connection side when the primary side is in the 1 -wire ground state (however, the fault phase is excluded).
Oln the case of using one LM-11ZNAV (LM-11YNAV) unit - The indicator rating is the voltage corresponding to the zero-phase voltage Vaf.
-There are two types of indicator maximum scale values, the nominal line voltage $\mathrm{VL}-\mathrm{L}$ and $1.36 \mathrm{XVL}-\mathrm{L}$. (1.36 is the value in the case of $150 \mathrm{~V} / 110 \mathrm{~V}$.)

- The zero-phase voltage Vaf is the voltage at the open end of the open Δ connection when the primary side is in the 1 -wire ground state.
-The alarm relay operation voltage is related only to the zero-phase voltage (that is, the VT ratio) and has no relationship with the indicator scale. (he VT raio) and has no realonip withe ind
- A synchroscope indicates the synchronization point (scale center) when the frequencies and the phases at a generator side and a bus line side are matched.
-If the frequencies of both sides are equal, the position at which the needle is stationary indicates the phase difference between the two.
-When the generator side (starting side) frequency is fg and the bus line side (operating side) frequency is fB , the direction of rotation of the needle is as follows:

When $f G=f B \quad$ The needle is stopped.
When $f \mathrm{f}>\mathrm{fB}$ The needle rotates in the FAST direction.

L1-11NSY

When $\mathrm{fG}<\mathrm{fB}$ The needle rotates in the SLOW direction.

Specifications

-	Wide-angle indicators			
Size (width \times height) mm	110×110			
Model name	LI-11NSY			
Operation principle	Movable iron core (induction)			
Accuracy (grade)	5			
Frequency	50 Hz or 60 Hz			
Weight (kg)	2.0			
Indicator type	1-phase		3-phase	
Rated voltage V	110	220	110	220
Consumption VA ${ }^{\text {a }}$ Generator side	4	8	4	8
- Bus line side	4	8	4	8
Accessory	T-150 shunt		T-150 resistor	
Delivery period classification	\triangle	\triangle	\triangle	\triangle
Special specification	With phase angle scale (delivery period: \triangle)			

Remarks (1) The pull-in and dropout frequencies are 2 to 3 Hz . That is, although the needle rotates up to a frequency difference of 2 to 3 Hz according to the difference and indicates whether the generator (or starting side) is slow or fast, when the difference becomes large, the needle moves slightly without rotating.
(2) The needle does not rotate when the frequency difference is large. In this case, judgments should be made using the light shown in the connection diagram. Please note that the light is not supplied; it is to be prepared by

Delivery period classification

Symbol	OStandard product	OQuasistandard product	\triangle Special product
Reterencedediverperiod	Immediate delivery	Within 20 days	21 to 60 days

(3) The specifications are continuous rating specifications.
(4) In a state where electricity is not supplied, the needle indicates an arbitrary position exceeding $\pm 30^{\circ}$ from the synchronization point.
(5) The lead wire length from the main synchroscope unit to an accessory device must be set to 5 m or less.
(6) Please make sure to read the "Safety Precautions" (pp.5-8) and the "Selection Precautions" (p.9) to assist in selecting the model and use specifications suited to the application.
(7) The scale must be specified. The standard specification is: SLOW-FAST.

OPhase angle scale

-An indicator with phase angle scale, in which an angle scale centered at the synchronization point (scale center) is drawn, can also be manufactured.
-The needle indicates the phase difference between the generator side and bus line side. The indicator can thus be used for measuring the phase difference when the needle is stationary or for timing of startup.

- The standard phase angle scale is a 30° forward/backward scale.

L1-11NSY with phase angle scale

Outer dimensions

Fig. 1 LI-11NSY

Outer dimensions of accessories

Fig. 1 T-150 phase splitter

Fig. 2 T-150 resistor

Connection diagrams

Fig. 1 3-phase system; combined with VT

Fig. 2 1-phase system; combined with VT

Fig. 3 3-phase system; 220V

Fig. 4 1-phase system; 220V

Remarks (1) The synchroscope operates normally even if the light shown in the diagrams is not used.
(2) Regarding light connection

- When combined with a VT, the same phase at the secondary side of the VT must be grounded.
- If a VT is not used (direct case), connect the same phases shown in the connection diagrams.
The light will not flash if not connected.
(3) Regarding light rating
- A value twice the circuit voltage is generated between the light connection terminals (between L_{1} and L_{2}). If a light of the same rating as the circuit voltage is to be used, connect two lights in series.

Example synchroscope light connection (for reference)

Fig. 1

Ordering method

\square Dual-element Indicators

Two measured quantities are indicated by the same indicator.

- Two independent movable coil indicators are incorporated, and by combination with a detector and a transmitter, two measured quantities, such as voltage and current, water level and water quantity, power and reactive power can be indicated by the same indicator to enable reduction in panel space. The indicator can be combined with power transducers to enable measurement of various electrical quantities.
-The needle colors are black and red (the front side needle as viewed from the front face of the indicator is black and the rear side needle is red).

LM-11NE

Specifications

Size (width \times height) mm		110×110 wide-angle indicator	
Model name		LM-11NE	
Operation principle		Movable coil	
Accuracy (grade)		1.5	
Scale length (mm)		175	
Weight (kg)		1.0	
Indicator rating (DC)		Approximate internal resistance value (Ω)	Delivery period
Both elements have same ratings	1 mA	1200	\bigcirc
	5 mA	50	
	10 mA	25	
	4-20mA	15	
Respective elements have different ratings	1/5mA	1 mA side: $1200,5 \mathrm{~mA}$ side: 50	\bigcirc
	$5 / 10 \mathrm{~mA}$	5 mA side: $50,10 \mathrm{~mA}$ side: 25	
	10/1mA	10 mA side: $25,1 \mathrm{~mA}$ side: 1200	

Delivery period classification

Symbol	OStandard product	OQuasistandard product	\triangle Special product
Reterence deliveryperiod	Immediate delivery	Within 20 days	21 to 60 days

Remarks (1) Indication accuracy: 15\% of full scale
(2) Relative deviation between the two needles: 2.0% of full scale
(3) Withstand voltage

Between electrical circuit as a whole and outer casing: 2210VAC, 5 s
Mutually between input circuits (indicator alone): 50 V AC, 1 min
(4) In the case of a double scale, each scale is drawn in the same color as the corresponding needle.
(5) In the case of an electrical quantity scale ($\mathrm{A}, \mathrm{V}, \mathrm{W}, \mathrm{var}, \cos \phi, \mathrm{Hz}$), the $\mathrm{AC} / \mathrm{DC}$ symbol and 3 -phase circuit symbol of the scale (primary side) are not indicated. The symbol of the receiving indicator is indicated.
(6) Please make sure to read the "Safety Precautions" (pp.5-8) and the "Selection Precautions" (p.9) to assist in selecting the model and use specifications suited to the application.

Outer dimensions

Connection diagram

Usage example

Specifications of LM-11NE dual element AC

voltmeter

Scales 0 to $9 k V$ (black)

$$
0 \text { to } 150 \mathrm{kV} \text { (red) }
$$

The zero point numeral is in black.
Scale divisions: The positions of 6.6 kV and 110 kV are the same.
Indicator internal resistance: $1.2 \mathrm{k} \Omega$ (for both elements)

Note 1. For low-voltage circuits, grounding of the secondary side of the instrument voltage transformer is unnecessary.

Ordering method

The items in \square must be specified.

\square Bar-shaped Indicators

Applications

Optimal as indicators for various process controls in power generating/transforming systems, steel plants and chemical plants, as well as general panel indicators.
-Useful for changing the panel appearance and significantly reducing panel size.
OLevel differences of measured values can be compared easily by coupled mounting of indicators.

Products list

-There are four types of outer size (length) $-100 \mathrm{~mm}, 130 \mathrm{~mm}, 150 \mathrm{~mm}$ and 170 mm .
-All models are available in vertical and horizontal mount specifications.
-For the FM model, both 1- and 2-needle meters can be manufactured.

Indicator type Outer dimensions			$100 \times 30 \mathrm{~mm}$	$130 \times 36 \mathrm{~mm}$	$150 \times 40 \mathrm{~mm}$	$170 \times 42 \mathrm{~mm}$
DC indicator FM model	Vertical mount	1 needle	FM-210SN	FM-213SN	FM-215SN	FM-217SN
		2 needles	FM-210DN	FM-213DN	FM-215DN	FM-217DN
	Horizontal mount	1 needle	FM-210SN	FM-213SN	FM-215SN	FM-217SN
		2 needles	FM-210DN	FM-213DN	FM-215DN	FM-217DN
AC indicator FR model	Vertical mount	1 needle	FR-210SN	FR-213SN	FR-215SN	FR-217SN
	Horizontal mount	1 needle	FR-210SN	FR-213SN	FR-215SN	FR-217SN

Standard specifications in common

Item	
Standards	Direct-acting electrical indicators JIS C 1102-2
Accuracy (grade)	$1,1.5$ or 2.5
Operating temperature range	$-5^{\circ} \mathrm{C} \sim 50^{\circ} \mathrm{C}$ (reference temperature: $23^{\circ} \mathrm{C}$)
Operating humidity range	At a relative humidity of $30 \sim 70 \%$, there are no adverse effects on indications.
Mounting attitude	Vertical (the scale plate is vertical with respect to a horizontal surface)
Insulation test	$10 \mathrm{M} \Omega$ or more at a test voltage of 500 VDC (between electrical circuit and outer casing)
Voltage test	2210 VAC for 5s (between electrical circuit and outer casing), 500VAC for 1min (between elements in a 2-needle model)
Crest factor of input signal	Sine wave $(\sqrt{2})$
Measurement category	CAT III (category of measurement performed inside a building facility)
Pollution degree of usage environment	2 (of a level where only a non-conducting pollution occurs)
Installation altitude	$2,000 \mathrm{~m}$ or less
Usage location	Indoors
Mounting panel	Metal panel
Storage temperature	$-20^{\circ} \mathrm{C} \sim 60^{\circ} \mathrm{C}$
Scale plate	Background color: white
Needle	Large triangular needle (red)
Cover	Acrylic resin (with antistatic treatment applied)
Case	Heat-resistant ABS resin
Accessory	Protective plates (Refer to p.105 for handling method.)

Panel mounting examples

-Horizontal mount

- Vertical mount
-Vertical coupled mount

\square Bar-shaped Indicators

DC indicators

(DC voltage/DC current input)

Specifications

				1-pointer type				2-pointer type			
Size			mm	100×30	130×36	150×40	170×42	100×30	130×36	150×40	170×42
Model name				FM-210SN	FM-213SN	FM-215SN	FM-217SN	FM-210DN	FM-213DN	FM-215DN	FM-217DN
Operation principle				Movable coil				Movable coil			
Accuracy (grade)				1.5 or 2.5	1 or 1.5			1.5 or 2.5	1 or 1.5		
		cale length	(mm)	66	88	100	100	66	88	100	100
Outer dimensions				Fig. 1	Fig. 2	Fig. 3	Fig. 4	Fig. 1	Fig. 2	Fig. 3	Fig. 4
Weight			(kg)	0.4	0.5	0.6	0.7	0.5	0.6	0.7	0.7
		Indicator rating	Delivery period classification	Internal resistance (Ω) or voltage drop							
$\frac{4}{\omega}$		$100 \mu \mathrm{~A}$	\triangle	4000	-	-		4000	-	-	
$\frac{\pi}{0}$		$500 \mu \mathrm{~A}$	\triangle	300	300	300		300	300	300	
은		1 mA	\triangle	100	100	100		100	100	100	
$\stackrel{\rightharpoonup}{\mathrm{o}}$		5 mA	\triangle	20	20	20		20	20	20	
		10 mA	\triangle	10	10	10		10	10	10	
-		4~20mA (zero-suppressed)	\triangle	10	10	10		10	10	10	
-		$50 \mathrm{~mA} \sim 10 \mathrm{~A}$	\triangle	60 mV	60 mV	60 mV		-			
		Indicator rating	Delivery period classification	Consumption current (approx.) mA							
		1, 5, 10V	\triangle	1 mA				1 mA			
$\stackrel{\widetilde{0}}{0}$		$1 \sim 5 \mathrm{~V}$ (zero-suppressed)	\triangle	1.25 mA				1.25 mA			
ㄷ		20~300V	\triangle	1 mA				-			

Remarks. (1) Models that can be mounted vertically and horizontally can be manufactured; please specify if required. Delivery period classification (2) Use the following table to select the application (instrumentation or panel) and accuracy grade.

Application	FM-210N	FM-213N	FM-215N	FM-217N
Instrumentation	1.5	1.0	1.0	1.0
Panel	2.5	1.5	1.5	1.5

Symbol	OStandard product	OQuasistandard product	\triangle Special product
Reterence deliveryperiod	Immediate delivery	Within 20 days	21 to 60 days

(3) The withstand voltage between the input terminals of the L element and the R element of a 2 -needle model (D) is 500 VAC for 1 min . In the case of a DC circuit or other circuit requiring a higher withstand voltage, use an isolator (T-101IS type) at the input.
(4) Provided with span adjuster (adjustment range: approx. $\pm 5 \%$).
(5) In the case of an electrical quantity scale ($\mathrm{A}, \mathrm{V}, \mathrm{W}, \mathrm{var}, \cos \phi, \mathrm{Hz}$), the $\mathrm{AC} / \mathrm{DC}$ symbol and 3 -phase circuit symbol are not indicated on the scale. The symbol of the input quantity of the receiving indicator is indicated.
(6) Please make sure to read the "Safety Precautions" (pp.5-8) and the "Selection Precautions" (p.9) to assist in selecting the model and use specifications suited to the application.

Ordering method

AC indicators

(AC voltage/AC current input)

Specifications

Size			mm	100×30	130×36	150×40	170×42
Model name				FR-210SN	FR-213SN	FR-215SN	FR-217SN
Operation principle				Rectifier			
Accuracy (grade)				2.5	1.5		
Scale length			(mm)	66	88	100	100
Outer dimensions				Fig. 1	Fig. 2	Fig. 3	Fig. 4
Weight			(kg)	0.5	0.6	0.7	0.7
	AC current input	Indicator rating	Delivery period classification	Consumption VA or voltage drop			
		$500 \mu \mathrm{~A} \sim 100 \mathrm{~mA}$	\triangle	1.4 V	1.4 V	1.4 V	1.4 V
		$100 \mathrm{~mA} \sim 5 \mathrm{~A}$	\triangle	0.2VA	0.2VA	0.2VA	0.2VA
	AC voltage input	Indicator rating	Delivery period classification	Consumption current mA			
		5~300V	\triangle	4 mA	4 mA	4 mA	4 mA

Remarks. (1) Models that can be mounted vertically and horizontally can be manufactured; please specify if required.
(2) Error may occur when the input waveform is distorted.
(3) Please specify the frequency.
(4) $2 x, 3 x$, and $5 x$ expanded scales can also be manufactured.

Delivery period classification

Symbol	OStandard product	OQuasistandard product	\triangle Special product
Reterencedediverperiod	Immediate delivery	Within 20 days	21 to 60 days

(5) In the case of an electrical quantity scale (A, V, W, var, $\cos \phi, \mathrm{Hz}$), the AC/DC symbol and 3-phase circuit symbol are not indicated on the scale. The symbol of the input quantity of the receiving indicator is indicated.
(6) Please make sure to read the "Safety Precautions" (pp.5-8) and the "Selection Precautions" (p.9) to assist in selecting the model and use specifications suited to the application.

Ordering method

\square Bar-shaped Indicators

Outer dimensions

Fig. 1 FM-210N/FR-210N

Terminal layout

No.	Model name	Terminal code						Adjuster	
		1	2	3	4	5	6	L	R
1	FM-210SN				+	L		\bigcirc	
2	FM-210DN		$\stackrel{+}{\text { R }}$	R	L	L		\bigcirc	\bigcirc
3	FR-210SN		\bigcirc	\bigcirc					

Fig. 2 FM-213N/FR-213N (protective plate unnecessary)

Outer dimensions

Fig. 3 FM-215N/FR-215N

Fig. 4 FM-217N/FR-217N

No.	Model name	Terminal code								Adjuster	
		1	2	3	4	5	6	7	8	L	R
1	FM-217SN					+	L			\bigcirc	
2	FM-217DN			$\stackrel{+}{\mathrm{R}}$	\dot{R}	+	L			\bigcirc	\bigcirc
3	FR-217SN					\bigcirc	\bigcirc				

F-217SN
F-217DN

\square Bar-shaped Indicators

Nameplate and tag number plate indication standards

Indications on nameplates and tag number plates shall be engraved according to the following standards.
Orders with no specified nameplates or tag number plates will be delivered without nameplates or tag number plates.

1. Indication method

Method Engraved/Ink
Font Round Gothic
Material ABS resin

2. Dimensions/Number of characters/Number of steps (vertical mount)

Plate		F-210N	F-213N	F-215N	F-217N
Nameplate	Effective area	9×28	11×32	15×38	25×38
	Number of characters per column	9	9	9	9
	Number of rows	2	2	3	3
Tag number plate	Effective area	9×28	11×32	10×38	8×38
	Number of characters per column	10	10	10	10
	Number of rows	1	1	1	1

- Effective area \qquad Dimensions enabling effective indication of characters (height \times width)
- Number of characters Maximum number of characters that can be entered in a single column
- Number of steps \qquad Number of character strings
- May differ from the standard size/position depending on the combination of the character string.
- Please inquire regarding horizontal mounting.

3. Style/Print color

Background color of nameplate • tag number plate	Print color	Outer frame color
(B) Black Munsell N1.5	White	Outer frame: N1.5
(F) Dark blue Munsell 7.5BG4/1.5	White	Outer frame: $7.5 \mathrm{BG} 4 / 1.5$
(W) White Munsell N9/0	Black	Outer frame: N1.5 or $7.5 \mathrm{BG} 4 / 1.5$

Olf the background color is not specified, it will be the same color as the outer frame.

4. Model-wise indication standards

Nameplates

Tag number plates

Nameplates

F-213N

F-215N

F-217N

Company emblem/Company name

Company emblem/Company name

\square Bar-shaped Indicators

Handling precautions

1. Using protective plates

- Protective plates are mounted to indicators so that the gaps between the indicator and panel cannot be seen. They are mounted to both sides of an indicator when a single unit is mounted, and mounted at both ends of the indicator when coupled mounting is used.
- Plate attachment

Match and insert the upper and lower inner protrusions of each plate in the grooves of the outer frame at the rear of the indicator.

- The plates are coated the same color as the outer frame.

The plates are packaged together with the indicator.
F-213N does not have protective plates.

2. Mounting the indicator

- Push on the front face of the panel to insert the unit. Next, turn the fastening screws in the rear face of the main unit clockwise using a standard screwdriver or box-end screwdriver with 5.5 mm opposing sides. In doing so, the mounting arms will be set automatically and fixed to the panel (thickness of corresponding panel: 1 to 6 mm).

3. Zero-point adjustment

- For indicators other than F-217N, open the tag number plate using a standard screwdriver and use the zero-point adjusters inside to adjust the zero point.
Be careful not to apply excessive force to the adjusters.
- For zero-point adjustment of the F-217N, use a standard screwdriver to adjust the zero point by turning the zero-point adjusters on the front face.
- If the unit is equipped with a zero-suppressed indicator, perform adjustment while applying electricity equivalent to the minimum scale value; for example, 4 mA in the case of 4 to 20 mA .

4. Disassembling of nameplates, tag number plates, covers and scale plates

Procedure 1.Remove the nameplate and tag number plate.
For pivoting tag number plates, remove the extraction pins at the rear. Remove while lifting the indicator approximately 5 mm from the panel surface.
(The pivoting tag number plate does not need to be removed to remove the scale plate.)

Pressure tag number plate F-217N

Pivoting tag number plate
F-210N, 213N, 215N
2. Remove the cover fastening screws.
3. To remove the cover, pull the upper side of the cover forward slowly and then lift slightly.

4. To prevent deformation of the needle, turn the zero-point adjuster and move the needle to the lower side.
5. Draw out the scale plate wedge toward the front.
6. The scale plate can be removed when the upper side (nameplate side) of the scale plate is slowly drawn outward and lifted slightly.

Note: Be careful not to deform the needle when removing the scale plate.

Transducers

Overview and Features

High performance realized in a compact module.

Single function models summeme

Power S Series(precision class, constant-voltage/constant-current output)

Instrumentation and Peripheral

An assortment of box models with power, instrumentation and peripheral elements arranged in compact modules.

Mitsubishi Electric transducers

Now even easier to use.

Collective transducers mose

Multi-use transducers that allow the input of various electric quantities from instrument transformers (VT, CT), and output DC signals and pulses.

-4 modes of mounting

- Compact modules that facilitate panel designing

The realization of compact modules was pursued. There are 2 types of outer dimensions.
(T-51/T-101 Series)
-Self-lifting screws utilized for input and output terminals
Wiring work is easier if self-lifting screws are used.
(T-51/T-101/T-120 Series)
Equipped with power supply indicator
An auxiliary power supply indicator (red LED) that indicates operating state is provided.
(excluding the T-51K and T-120 Series)
OMitsubishi Electric electronic technologies fully integrated In addition to carefully selected electronic parts, the design considers lighting/switching surges and noise.
-Select the optimal model according to the application
Single function models \qquad Power, instrumentation and peripheral transducers
K Series..... Ordinary class, fixed-load output
H Series..... Ordinary class, constant-voltage/constant-current output
S Series..... Precision class, constant-voltage/constant-current output
Collective
Multi-use for power applications

Safety Precautions

Please pay attention to the following items when using transducers.
Read the instruction manual attached to the product before performing settings or using the device.
For safety reasons, mounting and connection work should only be performed by a professional electrical wiring technician.

Precautions concerning usage environment and usage conditions

Do not use in the following locations. Use in such locations may lead to malfunction, significant error or reduced service life.

OLocations where the ambient temperature is outside the range of $-10^{\circ} \mathrm{C} \sim 50^{\circ} \mathrm{C}$.
OLocations where the average daily temperature exceeds $35^{\circ} \mathrm{C}$.
-Locations where the humidity is outside the range of $30 \% \mathrm{RH} \sim 85 \% \mathrm{RH}$ (no condensation).
-Locations with excessive dust, corrosive gases, salinity or oil fumes.
-Locations with excessive vibration or impact.
-Locations directly exposed to rain, water drops or sunlight.
OLocations with excessive external noise.
OLocations at an altitude of 1000 m or more.
-Locations where a strong electric field or magnetic field is generated.

- Locations where there are metal pieces or inductive substances present.

2 Mounting precautions

Please pay attention to the following items regarding mounting.
-The transducers must be mounted inside a panel.
-Tighten the mounting screws using the following torques:
M4 iron screws 1.47~1.86N•m
M4 brass screws 0.88~1.08N•m
M5 iron screws 2.94~3.43N•m
M5 brass screws 1.67~2.06N•m

3 Connection precautions

Please pay attention to the following items regarding connection.
-Use the specified materials and diameters for the electrical wires that connect the output and load of transducers in order to prevent failure due to external noise or surges.
OUse the following crimp terminals.

Series	Applicable crimp terminals	Tightening torque
T-51, T-101	Round crimp terminals (outer diameter: $\phi 8.5$ or less) for M4 screws	$0.98 \sim 1.47 \mathrm{~N} \bullet m$
T-120	Round crimp terminals (outer diameter: $\phi 8.3$ or less) for M4 screws	
	Round crimp terminals (outer diameter: $\phi 7.1$ or less) for M3.5 screws	$0.61 \sim 0.82 \mathrm{~N} \cdot m$

- Although transmission distances for standard combinations are indicated in this catalog, the values are to be used when there is no interference (e.g., induction voltage, surge) in the transmission line. If installation of the transmission line parallel to power cables is unavoidable and there is a possibility of inductive interference, use a shielded transmission line to avoid interference during use.
-Power factor and reactive power transducers will not operate correctly when connected as a reverse phase sequence. Use with the correct phase sequence.
-When a device, such as a harmonics transducer for measuring harmonic voltage is connected to a VT, do not remove the auxiliary power supply of multi-use or harmonics transducers from the VT. The harmonic voltage may not be measured correctly.
Oln regard to grounding in the connection diagrams, grounding of the secondary sides of the VT and CT is unnecessary for low-voltage circuits.

\triangle CAUTION

Connect correctly

Check the connection diagrams carefully before making connections. Erroneous connections may cause equipment to scorch or catch fire.

Fasten terminal connections securely
Fasten electrical wires securely to the terminals. Otherwise, overheating, equipment burnout or fire may occur.

Do not perform work with live wires

Do not perform connection work with live wires. Electrical shock, electrical burns, equipment burnout or fire may occur.

Do not open the secondary side of a CT circuit

Ensure that the signal on the secondary side of the CT is connected correctly to the CT connection terminals. Incorrect connection of the CT or opening the secondary side of the CT will cause high voltage on the secondary side of the CT, and may lead to equipment failure, electrical shock or a fire.

Do not short-circuit the secondary side of a VT circuit

Ensure that the secondary side of the VT is correctly connected to the VT connection terminals. Incorrect connection of the VT or short-circuiting the secondary side of the VT will cause a large overcurrent to flow through the VT secondary winding, which will lead to equipment failure, electrical shock or fire.

4 Precautions concerning preparation before use

 Please read the following items before use.(1) Transport

Avoid application of vibration and impact as much as possible during transport.
In situations where it is possible that transducers will be subject to excessive vibration or shock, remove the transducer from the panel before transportation.
(2) Check the model name and rating

As a precautionary measure, check the model name and specifications such as input, output and auxiliary power supply before use.
(3) Adjustment

Generally, transducers are adjusted before shipment from the factory and do not require adjustment. To perform adjustment for matching with receiving-side equipment, perform adjustment while avoiding the application of excessive force to the adjusters. Not doing so may cause failure of the adjusters.
Avoid touching the adjusters in ordinary circumstances.
(4) Insulation resistance test and withstand voltage test Please read the following carefully before performing an insulation resistance test or voltage test. Not doing so may cause failure.

\triangle CAUTION

Do not perform a withstand voltage test between input and output for non-isolated models

For instrumentation transducers where the input and output circuits are not insulated, do not perform withstand voltage testing between the input and output. Breakage will occur.
The withstand voltage test will cause the dielectric breakdown of internal elements, and may cause equipment failure or fire.

Usage precautions

Please pay attention to the following items during use.

\triangle CAUTION

Use transducers according to their ratings
Use transducers according to their ratings. Not doing so may cause significant error, failure or fire due to overheating.
For input values outside the rating range, the output value will be outside the rating range.

Ensure the settings are correct

For models requiring settings, read the relevant instruction manual carefully before performing settings. Setting errors or unset items may cause abnormal operation and alarms may not function properly for receiving-side equipment; for example, if no value is set, no alarm will be activated for the output signal.

Do not lower the input voltage

With the active power, reactive power, power factor, phase angle and frequency transducers, an error may occur if the input voltage is outside the specified operating range (guaranteed value: $90 \sim 110 \%$ of the rated voltage).
Additionally, malfunction may occur if the input voltage drop is significant (less than 60\% of the rated voltage).

6 Precautions concerning repair upon failure and treatment of abnormality
If an instrument malfunctions contact the nearest branch of Mitsubishi Electric System Service Co., Ltd. or Mitsubishi Electric.

7 Maintenance and inspection

Please pay attention to the following items regarding maintenance and inspection.
Refer to p. 174 for details.

\triangle CAUTION

Make sure to turn off the power for maintenance and inspections

When performing maintenance and inspections of transducers, be sure to turn off the power supply to the circuit connected to the transducer.
Electrical shock, electrical burns, equipment burnout or fire may occur if removal is attempted in the live-wire state.

8 Storage precautions

Do not store transducers for long periods in the following locations.

- Locations where the ambient temperature is outside the range of $-20 \sim 60^{\circ} \mathrm{C}$.
-Locations where the average daily temperature exceeds $35^{\circ} \mathrm{C}$.
- Locations where the humidity is outside the range of 30% RH $\sim 85 \%$ RH (no condensation).
-Locations with excessive dust, corrosive gases, salinity or oil fumes.
-Locations with excessive vibration or impact.
-Locations directly exposed to rain and/or water drops.
- Locations where there are metal pieces or inductive substances present.
When storing transducers, turn off the power, remove the wiring such as those for input/output/auxiliary power supply and place in a plastic bag.

\triangle CAUTION

Make sure to turn off the power before removal

In removing a transducer for storage, make sure to turn off the power supply of the circuit connected to the transducer.
Electrical shock, electrical burns, equipment burnout or fire may occur if removal is attempted in the live-wire state.

Disposal precautions

Dispose of the product appropriately according to the "Waste Management and Public Cleansing Law."
This product does not use batteries.

OWARRANTY

-The warranty period is 1 year from the date of purchase or 18 months after manufacture, whichever is earlier. Even during the warranty period, repairs for failure due to an intentional or negligent act by the customer shall be charged.

- Mitsubishi Electric shall not be liable for warranty against damages resulting from reasons not attributable to the company, opportunity loss and/or lost earnings on the customer's part due to malfunction of a Mitsubishi product, damages resulting from special circumstances whether foreseeable or unforeseeable by Mitsubishi, secondary damages, accident compensation, and damages and other services besides those of a Mitsubishi product.

-Product service life

- The expected life of a transducer is 10 years.
* The expected service life is the period or number of operations for which the transducer can be used without functions deteriorating to a level that impairs practical use, on the condition that the equipment or materials are used in accordance with standard specification conditions.
Please note that the expected service life is only a guide and performance is not guaranteed for this period. (Excerpt/Summary of "Expected Service Life of Electrical Equipment," in the September, 1998 issue of the Journal of the Institute of Electrical Installation Engineers of Japan.)

-Recommended exchange period

-The recommended exchange period for transducers is seven years.

-Requests Regarding Selection

1 For remote measurement, select a large output value.

When performing remote measurements, as a general rule, use a local transducer and ensure that transmissions are made according to the output side of the transducer; that is, ensure that the output side is not pulled over a long distance. Additionally, select a large output value; for example, 4~20mA.

2 Select an H or S Series model if the load resistance varies.

When the load resistance to be connected to the output terminals of a transducer is unknown, or where there is a possibility for future increases in load, select a constant-voltage, constant-current output transducer such as a model from the H or S series.

3 Select a model with an effective value if the input waveform becomes distorted.
AC-input transducers are calibrated based on sinusoidal input. In addition, depending on the model, error may occur when the input waveform is distorted due to the operating principle. Therefore, if there is waveform distortion, select an effective-value model with comparatively low error such as T-101SAA or T-101SAV.

4 Select a phase-angle transducer for unbalanced loads if the three-phase loads are unbalanced.

 Phase-angle transducer errors may occur if the three-phase loads of balanced circuits become unbalanced. Select a phase-angle transducer for unbalanced loads such as $\mathrm{T}-101 \mathrm{HPA}(\mathrm{U})$ or $\mathrm{T}-101 \mathrm{SPA}(\mathrm{U})$ if it is possible that the three-phase load will be unbalanced.
5 Error may occur when the input current is extremely low (phase angle, power factor).

When using a phase angle or power factor transducer, error or malfunction may occur when the input current drops significantly lower than the rated current. Therefore, when selecting the rated primary current of a CT , ensure that the secondary current during actual use is $1 / 3$ or more of the rated secondary current of the CT.

6 Check the electricity pulse unit (active and reactive).

Be certain to first check the restrictions applying to the value to be set for the electricity pulse unit (active and reactive) for multi-use transducers.

7 The standard bias/span ratio of the rated values of a transducer is $1 / 4$ or less.

Cases where the bias/span ratio is larger than $1 / 4$ can be supported by increasing the class index by multiples of $1 / 4$ only.
(Example 1) In the case where the output value is $4 \sim 20 \mathrm{~mA}$, the bias is 4 mA , the span is $16(=20-4) \mathrm{mA}$, and the bias/span ratio is thus $4 / 16=1 / 4$.
(Example 2) In the case where the output value is $12 \sim 20 \mathrm{~mA}$, the bias is 12 mA , the span is $8(=20-12) \mathrm{mA}$, and the bias/span ratio is thus $12 / 8=3 / 2$. This is six times the abovementioned ratio of $1 / 4$ and is accommodated by selecting a model with which the class index is multiplied by six; for example, if the class index is $0.25,0.25 \times 6=$ class 1.5 .

Power, Instrumentation and Peripheral

Products list

Power transducers

		K Series		H Series		S Series	
		Fixed load	Operation method	Constant voltage/ constant current	Operation method	Constant voltage/ constant current	Operation method
Current (p.112)		T-51KAA	Average value rectification	T-51HAA	Approximate effective value rectification	T-101SAA	Effective value computation
	Saturated power (p.113)	T-51KSS	Average value rectification	T-51HSS	Approximate effective value rectification	-	-
Voltage (p.114)		T-51KAV	Average value rectification	T-51HAV	Approximate effective value rectification	T-101SAV	Effective value computation
Active power (p.116)		-	-	T-101HW	Time division multiplication	T-101SW	Time division multiplication
Reactive power (p.118)		-	-	T-101HVAR	Time division multiplication	T-101SVAR	Time division multiplication
Phase angle(p.120)	3 -phase balanced circuit	-	-	T-101HPA	Phase discrimination	-	-
	3 -phase unbalanced loads	-	-	T-101HPA (U)	Positive phase detection phase discrimination	T-101SPA (U)	Positive phase detection phase discrimination (integration type)
Power factor (p.122)	3 -phase unbalanced loads	-	-	T-101HPF (U)	Positive phase detection power factor correction	T-101SPF (U)	Positive phase detection power factor computation
Frequency (p.124)		-	-	T-51HF	One-shot	T-101SF	Quartz oscillation frequency division
Voltage phase angle (p.125)		-	-	-	-	T-101SY	Voltage phase discrimination

Model Name Configuration

Power transducers

Instrumentation/Peripheral transducers

\longrightarrow Mitsubishi Electric transducers

Transducers (Single Function)

Olnstrumentation transducers

Product name	Model name
DC level (p.126)	T-51DL
DC reverse (p.127)	T-51DR
Isolator (p.128)	T-101IS
High-speed isolator (p.129)	T-101ISQ
Limiter (p.130)	T-51LM
Adder (p.131)	Resistance bulb (non-isolated)
Resistance bulb (isolated)	T-101TPZ
Temperature	Thermocouple (non-isolated)
(p.132)	Thermocouple (isolated)
First-order lag (p.136)	T-51DS

Peripheral transducers

Product name	Model name
AC current demand (moderate time interval) (p.138)	T-101HAA (DS)
AC voltage demand (moderate time interval) (p.139)	T-101HAV (DS)
Current transducer with power flow detection (p.140)	T-101HAA (D)
Leakage current (p.142) built-in low-pass filter	T-51LG
Voltage drop detector (p.146)	T-101VDL
Voltage rise detector (p.146)	T-101VDH
Filter (p.147)	T-51FA

- Product name (instrumentation)

Code	Product name
DL	DC level
DR	DC reverse
IS	Isolator
ISQ	High-speed isolator
LM	Limiter
AD	Adder
TP	Temperature (resistance bulb) [non-isolated]
TPZ	Temperature (resistance bulb) [isolated]
TC	Temperature (thermocouple) [non-isolated]
TCZ	Temperature (thermocouple) [isolated]
DS	First-order lag

- Product name (peripheral)

Code	Product name
HAA (DS)	AC current demand (moderate time interval)
HAV (DS)	AC voltage demand (moderate time interval)
HAA (D)	Current transducer with power flow detection
LG	Leakage current
LGF	Leakage current (with built-in low-pass filter)
VDL	Voltage drop detector
VDH	Voltage rise detector
FA	Filter

Current Transducers [Insulated]

T-51/T-101 Series

T-101SAA

*1 The load resistance connected to T-51KAA is fixed. In the case of current output, please specify a Delivery period classification resistance value no more than that shown in the table above; specify a resistance value no less than that shown in the table above in the case of voltage output.
*2 Error may occur when the input waveform is distorted.
For example, when the third harmonic content is 15%, the error is approx. $\pm 5 \%$ for T-51KAA, $\pm 2 \%$ for

Symbol	OStandard product	OQuasistandard product	\triangle Special product
Reiefencededinery period	Immediate delivery	Within 20 days	21 to 60 days

-Manufacturable range

| | | T-51KAA | T-51HAA |
| :---: | :---: | :---: | :---: |\quad T-101SAA

The voltage tolerance of a 24VDC auxiliary power supply is $\pm 10 \%$.
The voltage tolerance of a 100~120VDC auxiliary power supply is ${ }_{-25}^{+15} \%$.

Input/Output relationships

Connection diagrams (Refer to p. 156 for outer dimensions.)

Fig. 1 T-51KAA

Fig. 2 T-51HAA

Fig. 3 T-101SAA

Note 1. For low-voltage circuits, grounding of the secondary side of the current transformer is unnecessary.

Ordering method

- K Series

S Series

Model name	${ }_{\text {Cuput }}^{\text {Imput }}$
T-51KAA	5A
Model name	
T-51HAA	5A

\square Current Transducers (Saturated Power) [Insulated]

T-51/T-101 Series

Suited for motor circuits, heater circuits and other circuits in which an overcurrent flows during startup.
When combined with a needle indicator, an indicator with the scale expanded three-fold is realized.

	Model name	Accuracy (grade)	Input (AC)		Output (DC)	Ripple/ Response speed	Consumption VA	Auxiliary power supply	Weight	Delivery period classification
			Current	Frequency	Voltage or current and load					
	T-51KSS	0.5	$\begin{aligned} & 0 \sim 5 \sim 15 A \\ & 0 \sim 1 \sim 3 A \end{aligned}$	50 and 60 Hz	-T-51KSS (*1) $0 \sim 0.8 \sim(1) \mathrm{mA}$: specify $5 \mathrm{k} \Omega$ or less $0 \sim 4 \sim(5) \mathrm{V}$: specify $50 \mathrm{k} \Omega$ or less	5\% P-P or less 1s or less	0.4	-	0.4kg	\bigcirc
	T-51HSS	0.5	$\begin{aligned} & 0 \sim 5 \sim 15 A \\ & 0 \sim 1 \sim 3 A \end{aligned}$	50 and 60 Hz	$\begin{aligned} & \bullet \text { T-51HSS } \\ & 0 \sim 0.8 \sim(1) \mathrm{mA}: 0 \sim 5 \mathrm{k} \Omega \\ & 4 \sim 16 \sim(20) \mathrm{mA}: 0 \sim 600 \Omega \\ & 0 \sim 4 \sim(5) \mathrm{V}: 5 \mathrm{k} \Omega \sim \infty \\ & 0 \sim 8 \sim(10) \mathrm{V}: 10 \mathrm{k} \Omega \sim \infty \end{aligned}$	1\% P-P or less 1s or less	0.1	110VAC ${ }_{-15}^{+10} \%$ 50 and 60 Hz Consumption VA: 3	0.4 kg	\bigcirc

*1 The load resistance connected to T-51KSS is fixed. In the case of current output, please specify a
Delivery period classification resistance value no more than that shown in the table above; specify a resistance value no less than that shown in the table above in the case of voltage output.
*2 Models with 2- to 5-times expanded saturated power can also be manufactured.
*3 Error may occur when the input waveform is distorted.

Symbol	OStandard product	OQuasistandard product	\triangle Special product
Reierencedediverperiod	Immediate delivery	Within 20 days	21 to 60 days

*4 The tolerance of the maximum saturated power is within $\pm 10 \%$ (\% in respect to saturated power value).

-Manufacturable range

	T-51KSS	T-51HSS
Input	$0.1 \sim 7.5 \mathrm{~A}$	$0.1 \sim 5 \mathrm{~A}$
Output		Only specifications in the table above
Auxiliary power supply	AC	-

The voltage tolerance of a 24VDC auxiliary power supply is $\pm 10 \%$.
The voltage tolerance of a 100~120VDC auxiliary power supply is ${ }_{-25}^{+15} \%$.
Connection diagrams (Refer to p. 156 for outer dimensions.)

Note 1. For low-voltage circuits, grounding of the secondary side of the current transformer is unnecessary.
-Ordering method

Input/Output relationships

- H Series

Model name	$\begin{gathered} \hline \text { Input } \\ \hline \text { Current } \\ \hline \end{gathered}$	Output Voltage or current	Load resistance	Number of units
T-51KSS	0-5-15A	0-0.8-1mA	$3 \mathrm{k} \Omega$	10
Model name	${ }_{\text {Current }}^{\text {Input }}$	$\begin{gathered} \hline \text { Output } \\ \hline \text { Voltage or current } \\ \hline \end{gathered}$	Auxiliary power supply	Number of units
T-51HSS	0-5-15A	4-16-20mA	110VAC	20

[^3]
Voltage Transducers [Insulated]

T-51/T-101 Series

T-51HAV

T-101SAV

	Model name	Accuracy (grade)	Input (AC)		Output (DC)	Ripple/ Response speed	Consumption VA	Auxiliary power supply	Weight	Delivery period classification
			Voltage	Frequency	Voltage or current and load					
	T-51KAV	0.5	$\begin{aligned} & 150 \mathrm{~V} \\ & 300 \mathrm{~V} \end{aligned}$	50 and 60 Hz	-T-51KAV (*1) 1 mA : specify $5 \mathrm{k} \Omega$ or less 5 mA : specify $1 \mathrm{k} \Omega$ or less 100 mV : specify $50 \mathrm{k} \Omega$ or more 1 V : specify $50 \mathrm{k} \Omega$ or more 5 V : specify $50 \mathrm{k} \Omega$ or more	5\% P-P or less 1s or less	1.4	-	0.4 kg	\bigcirc
-吊	T-51HAV	0.5	$\begin{aligned} & 150 \mathrm{~V} \\ & 300 \mathrm{~V} \end{aligned}$	50 and 60Hz	$\begin{gathered} \bullet \text { T-51HAV, T-101SAV } \\ 1 \mathrm{~mA}: 0 \sim 5 \mathrm{k} \Omega \\ 5 \mathrm{~mA}: 0 \sim 1 \mathrm{k} \Omega \\ 4 \sim 20 \mathrm{~mA}: 0 \sim 600 \Omega \end{gathered}$	1\% P-P or less 1 s or less	$\begin{aligned} & 150 \mathrm{~V}: 0.4 \\ & 300 \mathrm{~V}: 0.8 \end{aligned}$	110 VAC $^{+10}$ \% 50 and 60 Hz Consumption VA: 3	0.4 kg	\bigcirc
	T-101SAV	0.25	$\begin{aligned} & 150 \mathrm{~V} \\ & 300 \mathrm{~V} \end{aligned}$	50 Hz or 60 Hz	$\begin{gathered} 1 \mathrm{~V}: 5 \mathrm{k} \Omega \sim \infty \\ 5 \mathrm{~V}: 5 \mathrm{k} \Omega \sim \infty \\ 10 \mathrm{~V}: 10 \mathrm{k} \Omega \sim \infty \\ 1 \sim 5 \mathrm{~V}: 5 \mathrm{k} \Omega \sim \infty \end{gathered}$	1\% P-P or less 0.5 s or less	$\begin{aligned} & 150 \mathrm{~V}: 0.4 \\ & 300 \mathrm{~V}: 0.8 \end{aligned}$	110 VAC $_{-15}^{+10} \%$ 50 and 60 Hz Consumption VA: 3	0.6kg	\triangle

*1 The load resistance connected to T-51KAV is fixed. In the case of current output, please specify a Delivery period classification resistance value no more than that shown in the table above; specify a resistance value no less than that shown in the table above in the case of voltage output.
*2 Error may occur when the input waveform is distorted.
For example, when the third harmonic content is 15%, the error is approx. $\pm 5 \%$ for T-51KAV, $\pm 2 \%$ for

Symbol	OStandard product	OUasistandard product	\triangle Special product
Reterence delivery period	Immediate delivery	Within 20 days	21 to 60 days

Manufacturable range

		T-51KAV	T-51HAV	T-101SAV
Input		50~300V		
Output		$\begin{gathered} 0.1 \sim 5 \mathrm{~mA} \\ 50 \mathrm{mV} \sim 5 \mathrm{~V} \end{gathered}$	$\begin{gathered} \hline 0.1 \sim 20 \mathrm{~mA} \\ 50 \mathrm{mV} \sim 10 \mathrm{~V} \\ \hline \end{gathered}$	
Auxiliary power supply	AC	-	$\begin{aligned} & 100,105,110,115,120 V_{+10} \% \\ & 200,210,220,230,240 V^{-15} \% \\ & \hline \end{aligned}$	
	DC	-	24V, 100~120V	$24 \mathrm{~V} \pm 10 \%$

The voltage tolerance of a 24 VDC auxiliary power supply is $\pm 10 \%$.
The voltage tolerance of a $100 \sim 120 \mathrm{VDC}$ auxiliary power supply is ${ }_{-25}^{+15} \%$.

Input/Output relationships

Connection diagrams (Refer to p. 156 for outer dimensions.)

Note 1. For low-voltage circuits, grounding of the secondary side of the instrument voltage transformer is unnecessary.

Ordering method

- K Series	Model name	$\begin{gathered} \hline \text { Input } \\ \hline \text { Voltage } \\ \hline \end{gathered}$	Output	Load resistance	Number of units	
	T-51KAV	150V	0-5V	50 k ת	10	
H Series S Series	Model name	Input	Frequency	Output Voitage or current	Auxiliary power supply	Number of units
	T-101SAV	150 V	60 Hz	4-20mA	110VAC	10

\square Active Power Transducers [Insulated]

T-51/T-101 Series

T-101HW

Delivery period classification

Manufacturable range

Symbol	OStandard product	OQuasistandard product	\triangle Special product
Reterence delivery period	Immediate delivery	Within 20 days	21 to 60 days

	T-101HW	T-101SW	
Input		Within the range of the inherent active power (Po) in the table above *1	
Output		$0.1 \sim 20 \mathrm{~mA} \quad 50 \mathrm{mV} \sim 10 \mathrm{~V}$ *2	
Auxiliary power supply	AC	$100,105,110,115,120 \mathrm{~V}{ }^{+10} \%$	

*1 Please specify an inherent active power value for the transducer (i.e., input rating of the active power transducer) within the range in the table above.
*2 The manufacturable range for bidirectional current output is $\pm 0.1 \sim \pm 5 \mathrm{~mA}$. Positive/negative bidirectional output models for positive/negative bidirectional inputs accompanying power flow and positive direction output-only models can also be manufactured.

[^4]
"Inherent active power" of active power transducers

An active power transducer can be manufactured if the transducer's inherent active power $\left(P_{0}=\frac{\text { primary-side active power (kW) }}{\text { VT ratio } \times \text { CT ratio }}\right)$
 is within the range of the table on the left.
 In the case of positive/negative bidirectional input, calculate using the larger of the positive or negative active powers.

* The primary-side active power (kW) mentioned here is not the full-load active power based on the VT-CT rating. It refers to the active power value kW (i.e., primary-side active power value corresponding to the rated output value) to be controlled according to the load state (e.g., light load). (equivalent to the scale of the indicator)

Inherent active power value calculation example
In the case of a 3-phase, 3-wire, VT 6600/110V, CT 200/5A arrangement with the primary side power being 2000kW:
Transducer inherent active power $P_{0}=\frac{\text { primary-side active power }(\mathrm{kW})}{\text { VT ratio } \times \text { CT ratio }}=\frac{2000 \mathrm{~kW}}{6600 / 110 \times 200 / 5}=0.833(\mathrm{~kW})$

Input/Output relationships

Connection diagrams (Refer to p. 156 for outer dimensions.)

Note 1. For low-voltage circuits, grounding of the secondary side of the instrument voltage transfomer and current transformer is unnecessary.

Ordering method

Model name		Input		Frequency	Transducer inherent active power value	Output	Auxiliary power supply	Number of units
T-101HW	3P3W	110V	5A		1000W	0-5V	110VAC	3
	In the case of a 3-phase, 4-wire unit, please specify the phase voltage and line voltage.				Although manufacturing will be performed even when specified in kW units, the specifications will be converted to W units on the rating nameplate. specify in the case of S Series.			

T-51/T-101 Series

T-101HVAR

Manufacturable range

		T-101HVAR		T-101SVAR
Input		Within the range of the inherent reactive power (Qo) in the table above. *1		
Output		$0.1 \sim 20 \mathrm{~mA}, 50 \mathrm{mV} \sim 10 \mathrm{~V}{ }^{* 2}$		
Auxiliary power supply	AC	DC		

The voltage tolerance of a 24VDC auxiliary power supply is $\pm 10 \%$.
The voltage tolerance of a 100~120VDC auxiliary power supply is ${ }_{-25}^{+15} \%$.

Symbol	OStandard product	OQuasistandard product	\triangle Special product
Reterencedediverperiod	Immediate delivery	Within 20 days	21 to 60 days

*1 Please specify the inherent reactive power value of the transducer within the range in the table above. The reactive power transducer has bidirectional inputs for lead (LEAD) and lag (LAG) of the phase.
*2 The manufacturable range for a bidirectional current output is $\pm 0.1 \sim \pm 5 \mathrm{~mA}$.
Unidirectional input and unidirectional output for the lag side (LAG) or the lead side (LEAD) can also be manufactured. Please specify LAG or LEAD.
(Example)

Input	Output
LAG 0~1kvar	$0 \sim 1 \mathrm{~mA}$
	$4 \sim 20 \mathrm{~mA}$
LEAD 0~1kvar	$0 \sim 100 \mathrm{mV}$
	$0 \sim 5 \mathrm{~V}$

[Insulated]

"Inherent reactive power" of reactive power transducers

A reactive power transducer can be manufactured if the transducer inherent reactive power $\left(\mathbf{Q}_{0}=\frac{\text { primary-side reactive power (kvar) }}{\text { VT ratio } \times \text { CT ratio }}\right)$
is within the range of the table on the left.
In the case of bidirectional input, calculate using the larger of the lag or lead reactive powers.

* The primary-side reactive power (kvar) mentioned here is not the full-load reactive power based on the VT-CT rating. It refers to the reactive power value kvar (primary-side reactive power value equivalent to the rated output value) to be controlled according to the power factor.

Inherent reactive power value calculation example
In the case of a 3-phase, 3-wire, VT 6600/110V, CT 200/5A arrangement with the primary-side reactive power being 1200kvar:
Transducer inherent reactive power $Q_{0}=\frac{\text { primary-side reactive power (kvar) }}{\text { VT ratio } \times C T \text { ratio }}=\frac{1200 \mathrm{kvar}}{6600 / 110 \times 200 / 5}=0.500(\mathrm{kvar})$

Input/Output relationships

Connection diagrams (Refer to p. 156 for outer dimensions.)

Fig. 1 T-101HVAR 3P3W T-101SVAR 3P3W

Fig. 2 T-101HVAR 3P4W
T-101SVAR 3P4W
*3 In the case of unidirectional input, the lag side (LAG) is the reactive power unless particularly specified.
*4 A CT must be inserted and used in the current circuit because reactive power transducers are three-current systems.
*5 Operation will be abnormal when the input of the three-phase circuit is a negative-phase sequence.
Note 1. For low-voltage circuits, grounding of the secondary sides of the instrument voltage transformer and current transformer is unnecessary.

Ordering method

Model name	Phase-wire	Input Voltage	Current	Tran	Frequency	Output	Auxiliary power supply	Number of units
T-101HVAR	3P3W	110 V	5A	LEAD10	60 Hz	-5-0-5V	110VAC	3

T-51/T-101 Series

T-101HPA (U)

Delivery period classification

■Manufacturable range

	T-101HPA, T-101HPA (U)	T-101SPA (U)

*1 The error increases when the input current decreaes.
-T-101HPA ... $1 / 5$ of the rated current or less
-T-101HPA(U) ... $1 / 5$ of the rated current or less
-T-101SPA(U) ...1/10 of the rated current or less
*2 The manufacturable range for a bidirectional current output is $\pm 0.1 \sim \pm 5 \mathrm{~mA}$.

The voltage tolerance of a 100~120VDC auxiliary power supply is ${ }_{-25}^{+15} \%$.

Input/Output relationships

Connection diagrams (Refer to p. 156 for outer dimensions.)

*3 When only the auxiliary power supply is applied, a value close to a phase angle of 0° (power factor of 1) is output.
*4 Use a transducer "for unbalanced loads" if there is a possibility for the 3-phase load to become unbalanced.
*5 With transducers for both balanced circuits and unbalanced loads, an error may occur when the 3-phase voltage becomes unbalanced.
*6 Operation will be abnormal when the input is a negative-phase sequence.
Note 1. For low-voltage circuits, grounding of the secondary sides of the instrument voltage transformer and current transformer is unnecessary.

Model name	Input				Frequency	$\begin{array}{\|c\|} \hline \text { Output } \\ \hline \text { Voltage or current } \\ \hline \end{array}$	Auxiliary power supply	Number of units
	Phase-wire	Voltage	Current	Phase angle				
T-101HPA (U)	3P3W	110V	5A	LEAD60 ${ }^{\circ}-0-L A G 60^{\circ}$	60 Hz	4-12-20mA	110VAC	5

In the case of 3-phase, 4-wire models, \quad _ Please specify in the case of $\mathrm{HPA}(\mathrm{U})$ and $\operatorname{SPA}(\mathrm{U})$.
please specify the phase
voltage and line voltage.
\square Power Factor Transducers

T-51/T-101 Series

T-101HPF (U)

*1 The error increases when the input current decreases.
-T-101HPF(U) ... $1 / 5$ of the rated current or less
-T-101SPF(U) ... 1/10 of the rated current or less
*2 The manufacturable range for a bidirectional current output is $\pm 0.1 \sim \pm 5 \mathrm{~mA}$.
Output specifications

- As indicated in the "Input/Output relationships," the outputs of a power factor transducer include an output (Output) proportional to the power factor and a lead/lag distinguishing output (SGN). The output characteristics are classified according to characteristics 1 to 3 (only the model with the characteristic of 3 is manufactured as the T-101HPF(U)).
- SGN output

In the case of phase lag ... $5 \mathrm{~V} \pm 0.5 \mathrm{~V}, 2 \mathrm{~mA}$ (Source: output current)
In the case of phase lead ... 1 V max, 5 mA (Sink: input current)
*3 When only auxiliary power supply is applied, a power factor close to 1 is output.
*4 An error may occur when the 3-phase voltage becomes unbalanced.
*5 Operation will be abnormal when the input is a negative-phase sequence.

(for Unbalanced Loads) [Insulated]

Input/Output relationships

The characteristic 1 model is manufactured only for voltage output.

Characteristic 2
The two outputs shown below are output simultaneously. mA ma

AC input (power factor)

The characteristic 2 model is manufactured only for current output.

Characteristic 3

-Power factor LEAD 0~1~LAG 0

- Power factor LEAD 0.5~1~LAG 0.5

$A C$ input (power factor)

Connection diagrams (Refer to p. 156 for outer dimensions.)

Note 1. For low-voltage circuits, grounding of the secondary sides of the instrument voltage transformer and current transformer is unnecessary.

Ordering method

Model name	Input				Frequency	Output	Auxiliary power supply	Number of units
T-101HPF (U)	3P3W	110V	5A	LEAD0.5-1-LAG0.5	60 Hz	4-12-20mA	110VAC	2
	In the case of 3-phase, 4-wire models, please specify the phase voltage and line voltage.					_Specify three values for the output.		

\square Frequency Transducers [Insulated]

T-51/T-101 Series

T-51HF

T-101SF

Manufacturable range

The voltage tolerance of a 24VDC auxiliary power supply is $\pm 10 \%$.
The voltage tolerance of a 100~120VDC auxiliary power supply is ${ }_{-25}^{+15} \%$.

■Input/Output relationships

Connection diagrams (Refer to p. 156 for outer dimensions.)

Fig. 1 T-51HF

Fig. 2 T-101SF

Note 1. For low-voltage circuits, grounding of the secondary side of the instrument voltage transformer is unnecessary.
Ordering method

Model name	Input		Output	Auxiliary power supply	Number of units
T-51HF	110 V	$45 \sim 55 \mathrm{~Hz}$	0~5V	110VAC	2

T-101SY

$\begin{array}{\|l\|} \hline \frac{0}{0} \\ \text { 䯧 } \\ \text { 旁 } \\ \hline \end{array}$	Model name	Accuracy (grade)	Input (AC)				Output (DC)	Ripple/ Response speed	Consumption VA		Auxiliary power supply	Weight	Delivery period classification
			Phase angle	Reference voltage	Compared volage	Frequency	Voltage or current and load		Reference side	Compared side			
-	T-101SY	1.0		$\left\lvert\, \begin{aligned} & \frac{110}{\sqrt{3}} / 110 \mathrm{~V} \\ & \text { switching } \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \frac{110}{\sqrt{3}} / 110 \mathrm{~V} \\ & \text { switching } \end{aligned}\right.$	50 Hz or 60 Hz	-1~0~1mA:0 $0 \mathrm{k} \Omega$	$\begin{gathered} 1 \% \text { P-P or less } \\ 1 \text { s or less } \end{gathered}$	0.3	0.3		0.6kg	\triangle
							$-5 \sim 0 \sim 5 \mathrm{~mA}: 0 \sim 1 \mathrm{k} \Omega$						
			LEAD60 ${ }^{\circ}$				-100~0~100mV : 5k $\sim \sim \infty$						
			$\sim 0^{\circ} \sim$				$-1 \sim 0 \sim 1 V: 5 k \Omega \sim \infty$						
			LAG60 ${ }^{\circ}$				$-5 \sim 0 \sim 5 \mathrm{~V}$: $5 \mathrm{k} \Omega \sim \infty$						
							-10~0~10V : $10 \mathrm{k} \Omega \sim \infty$				110VAC		
							$0 \sim 0.5 \sim 1 \mathrm{~mA}: 0 \sim 5 \mathrm{k} \Omega$				${ }_{-15}^{+10} \%$		
							0~2.5~5mA :0~1k				and 60Hz		
							$0 \sim 2.5 \sim 5 \mathrm{~mA}: 0 \sim 1 \mathrm{k} \Omega$				Consumption		
							4~12~20mA : $0 \sim 600 \Omega$				VA: 3		
			LEAD30 ${ }^{\circ}$				$0 \sim 50 \sim 100 \mathrm{mV}$: $5 \mathrm{k} \Omega \sim \infty$						
		2.0	$\sim 0^{\circ} \sim$				$0 \sim 0.5 \sim 1 \mathrm{~V}$: $5 \mathrm{~K} \Omega \sim \infty$						
			LAG30 ${ }^{\circ}$				$0 \sim 2.5 \sim 5 \mathrm{~V}$: $5 \mathrm{k} \Omega \sim \infty$						
							0~5~10V: 10k $2 \sim \infty$						
							1~3~5V:5KR~m						

Manufacturable range

*1 The manufacturable ranges for bidirectional output are $\pm 0.1 \sim \pm 5 \mathrm{~mA}$ and $\pm 50 \mathrm{mV} \sim \pm 10 \mathrm{~V}$.
*2 With a voltage phase angle transducer, when the frequencies
Delivery period classification

	OStandard	OQuasistandard	\triangle Special

of the standard voltage and comparative voltage are the same, a $D C$ output proportional to the phase difference between the two is obtained. When the voltages differ in frequency, the output fluctuates continously.
*3 The input terminals can be used for both $\frac{110}{\sqrt{3}}$ and 110 V , and either voltage can be input by changing the connection.

$$
\left(P_{0}-P_{1} \ldots \frac{110}{\sqrt{3}}, P_{0}-P_{2} \ldots .110 V\right)
$$

*4 If the reference and/or compared voltages fall to a value $1 / 3$ or less than that of the rated voltage while the auxiliary power supply is applied, failure may occur.

Input/Output relationships

Connection diagrams (Refer to p. 156 for outer dimensions.)

Ordering method

Model name	Voltage	Input Phase angle	Frequency	$\begin{array}{\|c\|} \hline \text { Output } \\ \hline \text { Voltage or current } \\ \hline \end{array}$	Auxiliary power supply	Number of units
T-101SY	110/ $\sqrt{3} / 110 \mathrm{~V}$	LEAD60 ${ }^{\circ}$ 0~LAG60 ${ }^{\circ}$	60 Hz	-100-0-100mV	110VAC	3

\square DC Level Transducers [Non-insulated]

T-51/T-101 Series

DC level transducers input DC voltage (or current) and output DC voltage or a DC current proportional to the input, and can be used for level conversion or as a buffer for power transducer output.
Use an isolator when insulation is required between the input and output.

T-51DL
Delivery period classification

Symbol	OStandard product	Quasi-standard product	\triangle Special product
Reierencedediery period	Immediate delivery	Within 20 days	21 to 60 days

	Model name	Accuracy (grade)	Input (DC) and input resistance		Output (DC)		Auxiliary power supply	Weight	Delivery period classification
					Voltage or current and load	Ripple/Response speed			
¢	T-51DL	0.25	100 mV	$100 \mathrm{k} \Omega$ or more	1 mA : 0~10k Ω			0.4 kg	\bigcirc
			1 V		$5 \mathrm{~mA}: 0 \sim 2 \mathrm{k} \Omega$		$110 \mathrm{VAC}^{+10} \%$		
			5 V		4~20mA : 0~600				
			10 V		100 mV : $500 \Omega \sim \infty$	1\% P-P or less	50 and 60 Hz		
			1~5V		1V : $500 \Omega \sim \infty$	0.2s or less	Consumption		
			1 mA		5V : 500 \sim_{\sim}^{\sim}		$\text { VA: } 3$		
			5 mA	Input voltage drop: 200 mV or less	10V : 1k』~				

Manufacturable range

	T-51DL		
Input		$60 \mathrm{mV} \sim 300 \mathrm{~V}, 0.5 \mathrm{~mA} \sim 0.1 \mathrm{~A}$	${ }^{*} 4$
Output		$0.1 \sim 20 \mathrm{~mA}, 50 \mathrm{mV} \sim 10 \mathrm{~V}$	
Auxiliary power supply	AC	$100,105,110,115,120 \mathrm{~V}_{+11} \%$ $200,210,220,230,240 \mathrm{~V}^{-15}$	
	DC	$24 \mathrm{~V} \pm 10 \%$	

*1 Resistance between input terminals.

Input	$60 \mathrm{mV} \sim 50 \mathrm{~V}$	over $50 \mathrm{~V} \sim 300 \mathrm{~V}$	$0.5 \mathrm{~mA} \sim 0.1 \mathrm{~A}$
Input resistance	$100 \mathrm{k} \Omega$	$2 \mathrm{k} \Omega / \mathrm{V}$	Input voltage drop: 200 mV or less

*2 Transducers with positive/negative bidirectional input and positive/negative bidirectional output can also be manufactured. The manufacturable ranges for bidirectional output are $\pm 50 \mathrm{mV} \sim \pm 10 \mathrm{~V}$ and $\pm 0.1 \sim \pm 20 \mathrm{~mA}$.
*3 The input and output are not insulated.
*4 Please inquire separately regarding input specifications exceeding 300V.

Usage examples

-To convert the power transducer output

-As a buffer between equipment

Connection diagrams (Refer to p. 156 for outer dimensional drawings)
\square

Fig. 1 T-51DL

Input/Output relationships

Ordering method

Model name	Input	Output Voltage or current	Auxiliary power supply	Number of units
T-51DL	4-20mA	0-5V	110VAC	2

[^5]
\square DC Reverse Transducers [Non-insulated]

T-51/T-101 Series

DC reverse transducers input DC voltage (or current) and output DC voltage or DC current inversely proportional to the input; for example, as the input signal increases from 0% to 100%, the output signal decreases from 100% to 0%.

Applications

- Monitoring of deviation amount in combination with devices such as a position detection sensor or temperature transducer
- To create a fail-safe arrangement in the event of losing control power supply

Delivery period classification

Symbol	OStandard product	OQuasistandard product	\triangle Special product
Reterence ediverperiod	Immediate delivery	Within 20 days	21 to 60 days

	Model name	Accuracy (grade)	Input (DC) and input resistance		Output (DC)		Auxiliary power supply	Weight	Delivery period classification
					Voltage or current and load	Ripple/Response speed			
¢	T-51DR	0.25			1~0mA : 0~10k Ω			0.4 kg	\bigcirc
					$5 \sim 0 \mathrm{~mA}: 0 \sim 2 \mathrm{k} \Omega$		110VAC ${ }_{15}^{+10} \%$		
					100~0mV : $500 \Omega \sim \infty$	1\% P-P or less	50 and 60 Hz		
					1~0V:500 $\sim \sim \infty$	0.2 s or less			
			$0 \sim 1 \mathrm{~mA}$		5~0V : 500 $\sim \sim \infty$				
			$0 \sim 5 \mathrm{~mA}$	Input voltage drop:	10~0V : $1 \mathrm{k} \Omega \sim \infty$		VA: 3		
			4~20mA		5~1V : $500 \Omega \sim \infty$				

Manufacturable range

*1 Resistance between input terminals

Input	$60 \mathrm{mV} \sim 50 \mathrm{~V}$	over $50 \mathrm{~V} \sim 300 \mathrm{~V}$	$0.5 \mathrm{~mA} \sim 0.1 \mathrm{~A}$
Input resistance	$100 \mathrm{k} \Omega$	$2 \mathrm{k} \Omega / \mathrm{V}$	Input voltage drop: 200 mV or less

*2 The input and output are not isolated.
*3 Please inquire separately regarding input specifications exceeding 300V.

Usage examples

Input/Output relationships

Connection diagrams (Refer to p. 156 for outer dimensions.)

Ordering method

Model name	Input		Auxiliary power supply	Number of units
T-51DR	0-5V	20-4mA	110VAC	3

\square Isolators [Insulated]

T-51/T-101 Series

Isolators provide insulation between DC circuits and measurement equipment, and between various sensors and control equipment.
Isolators can be used as a buffer or level exchange between input/output.

T-101IS
Delivery period classification
Delivery period classification

Symbol	OStandard product	OQuasistandard product	\triangle Special product
Reterencedediveryperiod	Immediate delivery	Within 20 days	21 to 60 days

	Model name	Accuracy (grade)	Input (DC) and input resistance	Output (DC)		Dielectric strength between input and output	Auxiliary power supply	Weight	Delivery period classification
				Voltage or current and load	Ripple/Response speed				
㐅্ঠি	T-101IS	0.25	$\left.\begin{array}{r}\left.\begin{array}{r}60 \mathrm{mV} \\ 1 \mathrm{~V} \\ 5 \mathrm{~V} \\ 10 \mathrm{~V} \\ 105 \mathrm{~V}\end{array}\right\} 100 \mathrm{k} \Omega \text { or more } \\ 150 \mathrm{~V}: 300 \mathrm{k} \Omega \text { or more } \\ 300 \mathrm{~V}: 600 \mathrm{k} \Omega \text { or more } \\ 1 \mathrm{~mA} \\ 5 \mathrm{~mA} \\ 4 \sim 20 \mathrm{~mA}\end{array}\right\}$Input voltage drop: 200 mV or less	1 mA $: 0 \sim 5 \mathrm{k} \Omega$ 5 mA $: 0 \sim 1 \mathrm{k} \Omega$ $4 \sim 20 \mathrm{~mA}$ $: 0 \sim 600 \Omega$ 100 mV $: 5 \mathrm{k} \Omega \sim \infty$ 1 V $: 5 \mathrm{k} \Omega \sim \infty$ 5 V $: 5 \mathrm{k} \Omega \sim \infty$ 10 V $: 10 \mathrm{k} \Omega \sim \infty$ $1 \sim 5 \mathrm{~V}$ $: 5 \mathrm{k} \Omega \sim \infty$	1\% P-P or less 0.5 s or less	$\begin{gathered} 2000 \mathrm{VAC} \\ 2000 \mathrm{VDC} \\ \text { for } 1 \mathrm{~min} \end{gathered}$	110VAC ${ }_{-15}^{+10} \%$ 50 and 60 Hz Consumption VA: 3	0.6kg	\bigcirc

Manufacturable range

	T-101IS		
Input		$60 \mathrm{mV} \sim 300 \mathrm{~V}, 0.5 \mathrm{~mA} \sim 0.1 \mathrm{~A} \quad{ }^{*} 4$	
Output		$0.1 \sim 20 \mathrm{~mA}, 50 \mathrm{mV} \sim 10 \mathrm{~V}$	
Auxiliary power supply	AC	$100,105,110,115,120 \mathrm{~V}_{+10} \%$ $200,210,220,230,240 \mathrm{~V}^{-15}$	
	DC	$24 \mathrm{~V} \pm 10 \%$	

*1 Resistance between input terminals

Input	$60 \mathrm{mV} \sim 50 \mathrm{~V}$	over $50 \mathrm{~V} \sim 300 \mathrm{~V}$	$0.5 \mathrm{~mA} \sim 0.1 \mathrm{~A}$
Input resistance	$100 \mathrm{k} \Omega$	$2 \mathrm{k} \Omega / \mathrm{V}$	Input voltage drop: 200 mV or less

*2 Combine with a shunt if the current input exceeds 0.1 A .
*3 Isolators that provide positive/negative bidirectional output or positive direction-only output for positive/negative bidirectional input can also be manufactured.
The manufacturable ranges for a bidirectional output are $\pm 50 \mathrm{mV} \sim \pm 10 \mathrm{~V}$ and $\pm 0.1 \sim \pm 5 \mathrm{~mA}$.
*4 Please inquire separately regarding input specifications exceeding 300 V .

Usage examples

Ordering method

Model name	Input	Output Voltage or current	Auxiliary power supply	Number of units
T-101IS	60 mV	0-1mA	110VAC	7

L Specify three values for bidirectional output.

\square High-speed Isolators [Insulated]

T-51/T-101 Series

(Response speed: 1ms)

High-speed isolators provide insulation between DC circuits and measurement devices, and between various sensors and control equipment. They operate at high response speeds, enabling use in high-speed control circuits and high-speed measurement applications.

T-101ISQ
Delivery period classification

Symbol	OStandard product	OQuasistandard product	\triangle Special product
Referencedediveryperiod	Immediate delivery	Within 20 days	21 to 60 days

Applications

- Insulation of real-time measurement signals
- Insulation of high-speed control systems

	Model name	Accuracy (grade)	Input (DC) and input resistance		Output (DC)		Dielectric strength between input and output	Auxiliary power supply	Weight	Delivery period classification
					Voltage or current and load	Ripple/Response speed				
¢	T-101ISQ	0.25	$\left.\begin{array}{r}\left.\begin{array}{r}60 \mathrm{mV} \\ 1 \mathrm{~V} \\ 5 \mathrm{~V} \\ 10 \mathrm{~V}\end{array}\right\} \quad 100 \mathrm{k} \Omega \text { or more } \\ 1 \sim 5 \mathrm{~V} \\ 150 \mathrm{~V}: 300 \mathrm{k} \Omega \text { or more } \\ 300 \mathrm{~V} \\ 1 \mathrm{~mA} \\ 500 \mathrm{~mA} \Omega \text { or more } \\ 4 \sim 20 \mathrm{~mA}\end{array}\right\}$Input voltage drop: 200 mV or less		$1 \mathrm{~mA}: 0 \sim 5 \mathrm{k} \Omega$	1% P-P or less 1 ms or less	2000VAC 2000VDC for 1 min		0.6kg	\triangle
					$5 \mathrm{~mA}: 0 \sim 1 \mathrm{k} \Omega$			110VAC		
					4~20mA : 0~600			${ }_{15}^{+10} \%$		
					100mV : $5 \mathrm{k} \Omega \sim \infty$			50 and 60 Hz		
					$1 \mathrm{~V}: 5 \mathrm{k} \Omega \sim \infty$ 5 V : $5 \mathrm{k} \Omega \sim \infty$			Consumption		
					$\begin{aligned} & 10 \mathrm{~V}: 10 \mathrm{k} \Omega \sim \infty \\ & 1 \sim 5 \mathrm{~V}: 5 \mathrm{k} \Omega \sim \infty \end{aligned}$					

Manufacturable range

		T-101ISQ	
Input		$60 \mathrm{mV} \sim 300 \mathrm{~V}, 0.5 \mathrm{~mA} \sim 0.1 \mathrm{~A}$	4
Output		0.1~20mA, $50 \mathrm{mV} \sim 10 \mathrm{~V}$	
Auxiliarypowersupply	AC	$\begin{aligned} & 100,105,110,115,120 V_{+10} \% \\ & 200,210,220,230,240 V^{-15} \% \end{aligned}$	
	DC	$24 \mathrm{~V} \pm 10 \%$	

*1 Resistance between input terminals

Input	$60 \mathrm{mV} \sim 50 \mathrm{~V}$	over $50 \mathrm{~V} \sim 300 \mathrm{~V}$	$0.5 \mathrm{~mA} \sim 0.1 \mathrm{~A}$
Input resistance	$100 \mathrm{k} \Omega$	$2 \mathrm{k} \Omega / \mathrm{V}$	Input voltage drop: 200 mV or less

*2 Combine with a shunt if the current input exceeds 0.1 A .
*3 Isolators that provide positive/negative bidirectional output or positive direction-only output for positive/negative bidirectional input can also be manufactured.
*4 The manufacturable ranges for bidirectional output are $\pm 50 \mathrm{mV} \sim \pm 10 \mathrm{~V}$ and $\pm 0.1 \sim \pm 5 \mathrm{~mA}$. Please inquire separately regarding input specifications exceeding 300V.
nput/Output relationships

Connection diagrams (Refer to p. 156 for outer dimensions.)

Fig. 1 T-101IS, 101ISQ

Model name	Input	$\begin{array}{\|c\|} \hline \text { Output } \\ \hline \text { Voltage or current } \\ \hline \end{array}$	Auxiliary power supply	Number of units
T-101ISQ	0-5V	4-20mA	110VAC	7

[^6]
\square Limiters [Non-insulated]

T-51/T-101 Series

Limiters restrict the variation range of an output signal and restrict the output to values outside the preset limit range when a signal outside the limit range is input.
CAL signals proportional to setting values are output, allowing accurate settings and set values to be checked.

-Applications

- Maximum and minimum value retention during abnormal operation of a control device
- Prevent full opening/closing of devices such as control valves
- Prevent of off-scale input to computers

Delivery period classification

Symbol	OStandard product	OQuasistandard product	\triangle Special product
Reterence deliveryperiod	Immediate delivery	Within 20 days	21 to 60 days

	Model name	$\begin{array}{c\|} \hline \text { Accu- } \\ \text { racy } \\ \text { (grade) } \end{array}$	Input (DC) and input resistance		Output (DC)		Setting		Auxiliary power supply	Weight	Delivery period classification
					Voltage or current and load	Ripple/Response speed	Accuracy	Range (CAL output)			
.	T-51LM	0.25	100 mV1 V5 V10 V$1 \sim 5 \mathrm{~V}$1 mA5 mA$0 \sim 20 \mathrm{~mA}$$4 \sim 20 \mathrm{~mA}$	$100 \mathrm{k} \Omega$ or more	1 mA : $0 \sim 5 \mathrm{k} \Omega$	1\% P-P or less 0.2 s or less	$\pm 0.25 \%$	- Unidirectional output	110VAC ${ }_{-15}^{+10} \%$ 50 and 60 Hz Consumption VA: 3	0.4 kg	\bigcirc
					$5 \mathrm{~mA}: 0 \sim 1 \mathrm{k} \Omega$			SLOW : 0~50\% (0~5VDC)			
					$0 \sim 20 \mathrm{~mA}: 0 \sim 600 \Omega$			$\left\{\begin{array}{l}\text { HIGH : 50~100\% (5~10VDC) }\end{array}\right.$			
					4~20mA : 0~600			- Bidirectional output			
					100mV : $5 \mathrm{k} \Omega \sim \infty$			$\{$ LOW : -100~0\% (-10~OVDC)			
					$1 \mathrm{~V}: 5 \mathrm{k} \Omega \sim \infty$ $5 \mathrm{~V} \cdot 5 \mathrm{R} \Omega \sim \infty$			\{HIGH : 0~100\% (0~10VDC)			
				200 mV or less	10V : 10k $\Omega \sim \infty$			CAL output load resistance:			
					1~5V : $5 \mathrm{k} \Omega \sim \infty$			10k $\Omega \sim \infty$			

-Manufacturable range

		$\mathrm{T}-51 \mathrm{LM}$
Input	$60 \mathrm{mV} \sim 10 \mathrm{~V}, 0.5 \mathrm{~mA} \sim 0.1 \mathrm{~A}$	
Output	$0.1 \sim 20 \mathrm{~mA}, 50 \mathrm{mV} \sim 10 \mathrm{~V}$	$* 2$
Auxiliary power supply	AC	$100,105,110,115,120 \mathrm{~V}_{+10} \%$ $200,210,220,230,240 \mathrm{~V}^{-15}$
	DC	$24 \mathrm{~V} \pm 10 \%$

*1 The input and output are not insulated.
*2 Limiters with bidirectional input and positive/negative bidirectional output can also be manufactured. The manufacturable ranges for bidirectional output are $\pm 50 \mathrm{mV} \sim \pm 10 \mathrm{~V}$ and $\pm 0.1 \sim \pm 5 \mathrm{~mA}$.

Setting procedure (Please carefully read the accompanying instruction manual.)

Lower limit	While measuring the lower-limit setting output voltage (between the LOW CAL. OUT and COM terminals), vary the lower-limit setter (LO) to set the lower limit value.
Upper limit	While measuring the upper-limit setting output voltage (between the HIGH CAL. OUT and COM terminals), vary the upper-limit setter (HI) to set the upper limit value.

Input/Output relationships

-Unidirectional output

-Bidirectional output

Model name	Voltage or current		Auxiliary power supply	Number of units
T-51LM	4-20mA	4-20mA	110VAC	5

[^7]
\square Adders [Non-insulated]

T-51/T-101 Series

Adders can be used to input several DC voltages or direct currents, perform addition according to the specified ratio, and output a DC voltage or direct current proportional to the addition result. An adder can also be used to perform actions such as concentrating power when combined with a power transducer.

T-101AD
Delivery period classification

Symbol	OStandard product	OQuasistandard product	\triangle Special product
Reierercedediverperiod	Immediate delivery	Within 20 days	21 to 60 days

	Model name	Accuracy (grade)	Input (DC) and input resistance		Number of circuits	Output (DC)		Auxiliary power supply	Weight	Delivery period classification	
					Voltage or current and load	Ripple/Response speed					
¢	T-101AD	0.5	$\left.\begin{array}{r}100 \mathrm{mV} \\ 1 \mathrm{~V} \\ 5 \mathrm{~V} \\ 10 \mathrm{~V} \\ 1 \sim 5 \mathrm{~V} \\ 1 \mathrm{~mA} \\ 5 \mathrm{~mA} \\ 4 \sim 20 \mathrm{~mA}\end{array}\right\}$	$100 \mathrm{k} \Omega$ or more		$\begin{array}{\|c} 4 \\ (\text { max. }) \end{array}$	$1 \mathrm{~mA}:$ $0 \sim 5 \mathrm{k} \Omega$ $5 \mathrm{~mA}:$ $0 \sim 1 \mathrm{k} \Omega$ $4 \sim 20 \mathrm{~mA}:$ $0 \sim 00 \Omega$ $100 \mathrm{mV}:$ $5 \mathrm{k} \Omega \sim \infty$ 1 V $: 5 \mathrm{k} \Omega \sim^{\infty}$ 5 V $: 5 \mathrm{k} \Omega \sim_{\infty}^{\infty}$ 10 V $: 10 \mathrm{k} \Omega \sim \infty$ $1 \sim 5 \mathrm{~V}$ $: 5 \mathrm{k} \Omega \sim \infty$	1\% P-P or less 0.2 s or less	110VAC ${ }_{-15}^{+10 \%}$ 50 and 60 Hz Consumption VA: 3	0.6kg	\bigcirc
				Input voltage drop:							
				200 mV or less							

Manufacturable range

	T-101AD
Input	

*1 Method for designating addition proportions
For example, if the inputs are $\mathrm{P}_{\mathrm{A}}=5 \mathrm{~V}(1000 \mathrm{~kW}), \mathrm{P}_{\mathrm{B}}=5 \mathrm{~V}(3000 \mathrm{~kW})$ and $\mathrm{PC}=5 \mathrm{~V}(5000 \mathrm{~kW})$, and the output is $5 \mathrm{~V}(9000 \mathrm{~kW})$, the addition proportions $=\frac{1}{9}: \frac{3}{9}: \frac{5}{9}$.
*2 If the number of inputs exceeds four, addition can be performed using 2 or more adders.
*3 Adders that provide positive/negative bidirectional output or positive direction-only output for positive/negative bidirectional input can also be manufactured.
The manufacturable ranges for bidirectional output are $\pm 50 \mathrm{mV} \sim \pm 10 \mathrm{~V}$ and $\pm 0.1 \sim \pm 5 \mathrm{~mA}$.
*4 The input and output are not insulated.
*5 For $4-20 \mathrm{~mA}$, an input of 0 mA is regarded as -4 mA for calculations.
*6 For $1-5 \mathrm{~V}$, an input of 0 V is regarded as -1 V for calculations.

Usage examples

-For synthesis of active powers of multiple circuits

-For more than 4 inputs

Input/Output relationships

Connection diagrams (Refer to p. 156 for outer dimensions.)

Ordering method

Model name	Input Input value/input quantity of each circuit	Output Output value/output quantity	Auxiliary power supply	Number of units
T-101AD	PA : 5V/1000kW, PB : 5V/2000kW	5V/3000kW	110VAC	

- Specify three values for bidirectional output.

The "addition proportions" are indicated on the rating nameplate instead of the "input quantity/output quantity" values.

\square Resistance-bulb Temperature Transducers

T-51/T-101 Series

These temperature transducers measure temperature by the change in resistance value of a resistance bulb and output DC current or DC voltage proportional to the temperature of the part measured.

-Applications

-Transmission of temperature signals to temperature monitors or temperature control

T-51TP

T-101TPZ equipment

Delivery period classification

- Temperature measurement of things such as voltage transformer oil

Symbol	OStandard product	OQuasistandard product	\triangle Special product
Reierencededivery period	Immediate delivery	Within 20 days	21 to 60 days

Manufacturable range

	T-51TP, T-101TPZ
Input	

The voltage tolerance of a 24VDC auxiliary power supply is $\pm 10 \%$.
The voltage tolerance of a 100~120VDC auxiliary power supply is ${ }_{-25}^{+15} \%$.
*1 Use these temperature transducers in combination with a 3-wire resistance bulb. If a 2-wire resistance bulb is used, error may occur due to the influence of lead-wire resistance.
*2 For 3-wire resistance bulbs, set the resistance values of the respective lead wires between the resistance bulb and the transducer to 10Ω or less. Additionally, set the difference among the lead-wire resistance values to within the values in the table below.

Resistance bulb	$\operatorname{Pt100\Omega } \cdot \mathrm{JPt} 100 \Omega$	$\mathrm{Pt50} \mathrm{\Omega}$	$\mathrm{Cu} 10 \Omega$
Difference among lead-wire resistance values	0.2Ω or less	0.1Ω or less	0.02Ω or less
Themperature error due to resistance differences in			
the table on the left is approximately 0.5 K.			

*3 The accuracy (grade) indicates the accuracy of the temperature transducer only and does not include the error of the resistance bulb. Additionally, the customer is requested to provide the resistance bulb.
*4 When resistance bulb input stops, burnout output is performed on the positive side.

■Examples of standard input specifications

Resistance bulb	Minimum span	Input measurement range (${ }^{\circ} \mathrm{C}$)			
$\begin{aligned} & \hline \mathrm{Pt100} \mathrm{\Omega}\left(\mathrm{at} 0^{\circ} \mathrm{C}\right) \\ & \mathrm{JPt} 100 \Omega\left(\mathrm{at} 0^{\circ} \mathrm{C}\right) \end{aligned}$	$50^{\circ} \mathrm{C}$	$\begin{aligned} & 0 \sim 100 \\ & 0 \sim 120 \end{aligned}$	$\begin{aligned} & 0 \sim 250 \\ & 0 \sim 300 \end{aligned}$	$\begin{aligned} & -20 \sim 80 \\ & -40 \sim 60 \end{aligned}$	$\begin{array}{r} -50 ~ 200 \\ -100 \sim 200 \end{array}$
Pt50 $\left(\mathrm{atO}^{\circ} \mathrm{C}\right)$	$100^{\circ} \mathrm{C}$	$\begin{aligned} & 0 \sim 150 \\ & 0 \sim 200 \end{aligned}$		$\begin{aligned} & -50 \sim 50 \\ & -50 \sim 150 \end{aligned}$	
Cu10 $\left.{ }^{(a t 25}{ }^{\circ} \mathrm{C}\right)$	$100^{\circ} \mathrm{C}$	(Please	y for ca	er than list	
Ni and resistance bulbs other than the above	Please specify the input temperature range and the temperature/resistance value relationship of the resistance bulb.				

Selection between insulated/non-insulated (between input and output)

Make a selection according to the temperature sensor configuration explained in the following table.

Temperature sensor	
Insulated with respect to the object measured	Both insulated and non-insulated units can be used. However, if the temperature sensor is located close to a power supply line or control equipment, common mode noise due to electromagnetic induction may occur. Use an insulated unit in this case.
Non-insulated with respect to the object measured	Make sure to use insulated units to prevent circuit noise interference due to the common potential generated in temperature sensors and the penetration of external noise.

(Insulated/Non-insulated)

Input/Output relationships

Inspection and adjustment

Perform the following procedure to check whether or not a transducer is operating normally.
(1) Install an inspection resistor at (near) the installation location of the resistance bulb and connect the inspection resistor.
(2) Check whether or not the transducer outputs a value corresponding to the inspection temperature. If there is an error in output, adjust the transducer using the output adjuster.
A GR-2 standard resistor (sold separately) can be used as an inspection resistor (see p.149).

Connection diagrams (Refer to p. 156 for outer dimensions.)

Model name	Input			Auxiliary power supply	Number of units
T-101TPZ	$0-200^{\circ} \mathrm{C}$	Pt100 ${ }^{\text {a }}$	$4-20 \mathrm{~mA}$	110VAC	

Thermocouple Temperature Transducers

T-51/T-101 Series

Thermocouple temperature transducers use the electromotive force of the thermocouple to measure the temperature and output DC current or DC voltage proportional to the temperature of the part being monitored.

T-101TCZ

Applications

-Temperature measurement of devices such as high-temperature furnaces

- Transmission of temperature signals to temperature monitors or temperature control equipment

Delivery period classification

Symbol	OStandard product	OQuasistandard product	\triangle Special product
Reterence deliveryperiod	Immediate delivery	Within 20 days	21 to 60 days

-Manufacturable range

T-101TC, T-101TCZ	
Input	

The voltage tolerance of an AC auxiliary power supply is ${ }_{-15}^{+10} \%$.
*1 Please specify the input temperature range so that it is within the measurable range of the thermocouple and ensure that the span value is at least the minimum span value. Example: In the case of an R thermocouple, $0 \sim 500^{\circ} \mathrm{C}$ or $100 \sim 600^{\circ} \mathrm{C}$ is specified as the input temperature range.
*2 The input signal source resistance (thermocouple sensor resistance value + compensation wire round trip resistance value) must be 100Ω or less.
Influence of the signal source resistance: approx. $0.1 \mu \mathrm{~V} / \Omega$ or less with respect to the thermal electromotive force.
*3 The accuracy (grade) indicates the accuracy of the temperature transducer only and does not include the error of the thermocouple sensor. Additionally, the customer is required to provide the thermocouple sensor.
*4 When thermocouple input stops, burnout output is performed on the positive side.

Examples of standard input specifications

Input sensor	Measurement range (${ }^{\circ} \mathrm{C}$)					
$\begin{gathered} K \\ (C A) \end{gathered}$	0~ 100	0~ 150	0~ 200	0~ 250	0~ 300	0~ 400
	0~ 500	0~ 600	0~ 800	0~1000	0~1200	
	100~ 200	300~ 600	400~ 800	400~1000	600~ 800	600~1200
	-50~ 150	-100~ 300				
$\begin{gathered} \mathrm{T} \\ (\mathrm{CC}) \end{gathered}$	0~ 120	0~ 150	0~ 200	0~ 300	0~ 400	
	$\begin{array}{r} -50 \sim 100 \\ -200 \sim 200 \end{array}$	$\begin{array}{r} -50 \sim 150 \\ -200 \sim 400 \end{array}$	-50~ 200	$-100 \sim 50$	-100~ 100	
(IC)	0~ 100	0~ 150	0~ 200	0~ 250	0~ 300	
	0~ 400	0~ 500	0~ 600	0~ 800		
	-50~ 100	-50~ 150				
$\begin{gathered} \text { E } \\ \text { (CRC) } \end{gathered}$	0~ 100	0~ 300	0~ 500	0~ 600		
	50~ 150	300~ 600				
	-10~ 90					
$\begin{aligned} & \text { R } \\ & \stackrel{\rightharpoonup}{S} \end{aligned}$	$\begin{aligned} & 0 \sim 1000 \\ & 0 \sim 1600 \end{aligned}$	0~1200	0~1300	0~1400	0~1500	
	$\begin{array}{r} 300 \sim 1300 \\ 1000 \sim 1400 \end{array}$	$\begin{array}{r} 400 \sim 1400 \\ 1100 \sim 1600 \end{array}$	$\begin{array}{r} 400 \sim 1600 \\ 1300 \sim 1600 \end{array}$	800~1300	800~1600	

(Insulated/Non-insulated)

Selection between insulated/non-insulated (between input and output)
Please make a selection according to the temperature sensor configuration explained in the following table.

Temperature sensor	Temperature transducer
Insulated with respect to the measured object	Both insulated and non-insulated units can be used. However, if the temperature sensor is located close to a power supply line or control equipment, common mode noise due to electromagnetic induction may occur. Use an insulated unit in this case.
Non-insulated with respect to the measured object	Make sure to use an insulated unit to prevent circuit noise interference due to the common potential generated in temperature sensors and the penetration of external noise.

Inspection and adjustment

Perform the following procedure to check whether or not a transducer is operating normally.
(The inspection temperature is the maximum input temperature.)
(1) Measure the temperature (reference temperature) in the immediate vicinity of the transducer.
(2) Using the thermal electromotive force table in JIS C 1602, please note the thermal electromotive forces corresponding to the transducer maximum input temperature and the reference temperature.
(3) Apply a DC voltage equivalent to (electromotive force of the maximum input temperature - electromotive force of the reference temperature) to the input side of the transducer.
(4) Check whether or not an output equivalent to the maximum input temperature is output. If there is an error in the output, adjust the transducer using the output adjuster.

Input/Output relationships

Connection diagrams (Refer to p. 156 for outer dimensions.)
(*5) A cold contact compensator is provided with T -101TC and T -101TCZ.

Fig. 1 T-101TC, T-101TCZ

Ordering method

Model name	Input		Output	mply	Number of units
T-101TC	$0-300^{\circ} \mathrm{C}$	T	0-5V	110VAC	10

\square First-order Lag Transducers [Non-insulated]

T-51/T-101 Series

These transducers apply a time constant to the DC input signal and delay the response speed.
The time constant can be set to any value between 1 and 60 seconds.

Delivery period classification

	Model name	Accuracy class	Input (DC) and input resistance	Output (DC)			Auxiliary power supply	Weight	Delivery period classification
				Voltage or current and load	Time constant	Ripple			
$\begin{aligned} & \times \\ & \hline \end{aligned}$	T-51DS	0.5	$\left.\begin{array}{r\|r}\left.\left.\begin{array}{r}100 \mathrm{mV} \\ 1 \mathrm{~V} \\ 5 \mathrm{~V}\end{array}\right\} \begin{array}{l}100 \mathrm{k} \Omega \text { or more } \\ 10 \mathrm{~V} \\ 1 \sim 5 \mathrm{~V}\end{array}\right\} \\ 1 \mathrm{~mA} \\ 5 \mathrm{~mA} \\ 4 \sim 20 \mathrm{~mA}\end{array}\right\}$Input voltage drop: 200 mV or less	1 mA $: 0 \sim 5 \mathrm{k} \Omega$ 5 mA $: 0 \sim 1 \mathrm{k} \Omega$ $4 \sim 20 \mathrm{~mA}$ $: 0 \sim 600 \Omega$ 100 mV $: 5 \mathrm{k} \Omega \sim \infty$ 1 V $: 5 \mathrm{k} \Omega \sim \infty$ 5 V $: 5 \mathrm{k} \Omega \sim \infty$ 10 V $: 10 \mathrm{k} \Omega \sim \infty$ $1 \sim 5 \mathrm{~V}$ $: 5 \mathrm{k} \Omega \sim \infty$	1 to 60s Accuracy: $\pm 20 \%$ $\left[\begin{array}{c} \text { with respect } \\ \text { to set value } \end{array}\right]$	1\% P-P or less	$\begin{gathered} 110 \mathrm{VAC}{ }_{-15}^{+10} \% \\ 50 \text { and } 60 \mathrm{~Hz} \\ \text { Consumption VA: } 3 \end{gathered}$	0.4 kg	\bigcirc

Manufacturable range

	T-51DS
Input	$60 \mathrm{mV} \sim 10 \mathrm{~V}, 0.5 \mathrm{~mA} \sim 0.1 \mathrm{~A}$
Output	

*1 The input and output are not insulated.
*2 The time constant can be set arbitrarily.

Time constant, time interval and response speed relationship

The time constant (τ) refers to the time required for an output value to reach 63% of a fixed input value when the input is applied continuously.

Connection diagrams (Refer to p. 156 for outer dimensions.)

Usage example

-For measurement of moderate time interval active power demand

Front view

Ordering method

Model name	$\begin{array}{\|c\|} \hline \text { Input } \\ \hline \text { Voltage or current } \\ \hline \end{array}$	Voltage or current	Auxiliary power supply	Number of units
T-51DS	4-20mA	0-5V	110VAC	2

\square AC Current Demand Transcuccers (Moderate Time Interval) [Insulated]

T-51/T-101 Series

AC current demand transducers output DC current or DC voltage that is proportional to the average value (demand value) of the AC current within a specified time interval.

■Applications

- Protection of transmission lines

T-101HAA (DS)
Delivery period classification

Symbol	OStandard product	OQuasistandard product	\triangle Special product
Reterence deliveryperiod	Immediate delivery	Within 20 days	21 to 60 days

	Model name	$\begin{aligned} & \text { Accuracy } \\ & \text { (grade) } \end{aligned}$	Input (AC)		Output (DC)			Consumption VA	Auxiliary power supply	Weight	Deliveryperiodclassification
			Current	Frequency	Voltage or current and load	Time interval (to)	Ripple				
-্চ্শ	T-101HAA(DS)	0.5	$\begin{aligned} & 5 A \\ & 1 A \end{aligned}$	50 and 60 Hz	$1 \mathrm{~mA}: 0 \sim 5 \mathrm{k} \Omega$ $5 \mathrm{~mA}: 0 \sim 1 \mathrm{k} \Omega$ $4 \sim 20 \mathrm{~mA}: 0 \sim 600 \Omega$ $100 \mathrm{mV}: 5 \mathrm{k} \Omega \sim \infty$ $1 \mathrm{~V}: 5 \mathrm{k} \Omega \sim \infty$ $5 \mathrm{~V}: 5 \mathrm{k} \Omega \sim \infty$ $10 \mathrm{~V}: 10 \mathrm{k} \Omega \sim \infty$ $1 \sim 5 \mathrm{~V}: 5 \mathrm{k} \Omega \sim \infty$	$\left.\begin{array}{r} 15 \mathrm{~s} \\ 30 \mathrm{~s} \\ \text { 60s } \\ 120 \mathrm{~s} \\ 150 \mathrm{~s} \\ 180 \mathrm{~s} \end{array}\right\} \text { Specify }$	$\begin{gathered} 1 \% ~ P-P \\ \text { or less } \end{gathered}$	0.1	110 VAC $_{-15}^{+10} \%$ 50 and 60 Hz Consumption VA: 5	0.5kg	\bigcirc

Manufacturable range

	T-101HAA (DS)	
Input		$0.1 \sim 5 \mathrm{~A}$
Output		$0.1 \sim 20 \mathrm{~mA}, 50 \mathrm{mV} \sim 10 \mathrm{~V}$
Auxiliary power supply	AC	$100,105,110,115,120 \mathrm{~V}^{+10}$ $200,210,220,230,240 \mathrm{~V}^{-15}$
	DC	$24 \mathrm{~V} \pm 10 \%$

The time interval (to) refers to the time required for an output (lo) to reach a value corresponding to 95% of a fixed input value (I) when the input (I) is applied continuously.
The output becomes substantially 100% at 3 times the time interval (3to).

Accuracy of time interval (to): $\pm 20 \%$
The accuracy of the time interval is the accuracy of the time at which the output reaches a value corresponding to 95% of a fixed value when input.
*2 Error may occur when the waveform of the input current is distorted.
For example, when the third harmonic content is 15%, the error is approx. $+2.0 \%$.

Input/Output relationships

Connection diagrams (Refer to p. 156 for outer dimensions.)

Fig. 1 T-101HAA (DS)

Note 1. For low-voltage circuits, grounding of the secondary side of the current transformer is unnecessary.
Ordering method

A C Volage Demand Transducers (Moderate Time Interval) [Insulated]

T-51/T-101 Series

AC voltage demand transducers output DC current or DC voltage that is proportional to the average value (demand value) of the AC voltage within a specified time interval.

Applications

- Monitoring of voltage due to load fluctuation
-For detecting abnormal voltages in devices such as small-scale generators
-For preventing the detection of error due to flicker

T-101HAV (DS)

Delivery period classification

Symbol	OStandard product	Quasistandard product	\triangle Special product
Reterene ediveryperiod	Immediate delivery	Within 20 days	21 to 60 days

	Model name	Accuracy(grade)	Input (AC)		Output (DC)			Consumption VA	Auxiliary power supply	Weight	Delivery period classification
			Voltage	Frequency	Voltage or current and load	Time interval (to)	Ripple				
$\underset{\sim}{\circ}$	T-101HAV (DS)	0.5	$\begin{aligned} & 150 \mathrm{~V} \\ & 300 \mathrm{~V} \end{aligned}$	50 and 60 Hz	1 mA $: 0 \sim 5 \mathrm{k} \Omega$ 5 mA $: 0 \sim 1 \mathrm{k} \Omega$ $4 \sim 20 \mathrm{~mA}$ $: 0 \sim 600 \Omega$ 100 mV $: 5 \mathrm{k} \Omega \sim \infty$ 1 V $: 5 \mathrm{k} \Omega \sim \infty$ 5 V $: 5 \mathrm{k} \Omega \sim \infty$ 10 V $: 10 \mathrm{k} \Omega \sim \infty$ $1 \sim 5 \mathrm{~V}$ $: 5 \mathrm{k} \Omega \sim \infty$	$\left.\begin{array}{r} 15 s \\ 30 \mathrm{~s} \\ 60 \mathrm{~s} \\ 120 \mathrm{~s} \\ 150 \mathrm{~s} \\ 180 \mathrm{~s} \end{array}\right\} \text { Specify }$	$\begin{aligned} & 1 \% \text { P-P } \\ & \text { or less } \end{aligned}$	$\begin{aligned} & 150 \mathrm{~V}: 0.4 \\ & 300 \mathrm{~V}: 0.8 \end{aligned}$	$110 \mathrm{VAC}^{+15}{ }^{+10} \%$ 50 and 60 Hz Consumption VA: 5	0.5kg	\bigcirc

Manufacturable range

	$\mathrm{T}-101 \mathrm{HAV}$ (DS)
Input	

*1 Accuracy of time interval (to): $\pm 20 \%$
The accuracy of the time interval is the accuracy of the time at which the output reaches a value corresponding to 95% of a fixed value

The time interval (to) refers to the time required for an output (lo) to reach a value corresponding to 95% of a fixed input value (I) when the input (I) is applied continuously.
The output becomes substantially 100% at 3 times the time interval (3to).
 when input.
*2 Error may occur when the waveform of the input voltage is distorted. For example, when the third harmonic voltage is 15%, the error is approx. $+2.0 \%$.

Input/Output relationships

Connection diagrams (Refer to p. 156 for outer dimensions.)

Fig. 1 T-101HAV (DS)

Note 1. For low-voltage circuits, grounding of the secondary side of the instrument voltage transformer is unnecessary.
Ordering method
Model name

Input
Voltage
150 V

Time interval	Output
	Voltage or current

\square Current Transducers with Power Flow

T-51/T-101 Series

Current transducers receive the current and voltage of 3-phase AC circuits as input, distinguish the power flow direction (receiving or sending), and output DC current or DC voltage proportional to the current value that was input.

Delivery period classification
Delivery period classification

Symbol	OStandard product	OQuasistandard product	\triangle Special product
Reterencededieyperiod	Immediate delivery	Within 20 days	21 to 60 days

	Model name	Accurac(grade)	Circuit	Input (AC)				Output (DC)	Ripple/ Response speed	Consumption VA		Auxiliary power supply	Weight	$\begin{array}{\|c\|} \hline \text { Delivery } \\ \text { period } \\ \text { classication } \end{array}$
				Voltage	Current	Frequency	Disisinuishable phase angle range	Voltage or current and load		Current circuit	Voltage circuit			
-্ద	T-101HAA (D)	0.5		110V	(Sending) (Receiving)$-5 A \sim 0 \sim 5 A$	$\begin{gathered} 50 \text { and } \\ 60 \mathrm{~Hz} \end{gathered}$	-Receiving $-85^{\circ} \sim 0^{\circ} \sim 85^{\circ}$ (275 ${ }^{\circ}$) - Sending $95^{\circ} \sim 180^{\circ} \sim 265^{\circ}$	(Sending) (Receiving)$\begin{aligned} &-1 \sim 0 \sim 1 \mathrm{~mA}: 0 \sim 5 \mathrm{k} \Omega \\ &-5 \sim 0 \sim 5 \mathrm{~mA}: 0 \sim 1 \mathrm{k} \Omega \\ &-20 \sim 0 \sim 2 \mathrm{~mA}: 0 \sim 600 \Omega \\ &-100 \sim 0 \sim 100 \mathrm{mV}: 5 \mathrm{k} \Omega \sim \infty \\ &-1 \sim 0 \sim 1 \mathrm{~V}: 5 \mathrm{k} \Omega \sim \infty \\ &-5 \sim 0 \sim 5 \mathrm{~V}: 5 \mathrm{k} \Omega \sim \infty \\ &-10 \sim 0 \sim 10 \mathrm{~V}: 10 \mathrm{k} \Omega \sim \infty \end{aligned}$	1\% P-P or less 1s or less	0.1	0.3			
				220 V							0.6	110VAC		
				10 V	(Sending) (Receiving)$-1 \mathrm{~A} \sim 0 \sim 1 \mathrm{~A}$						0.3	Consumption		
				220 V							0.6			

Manufacturable range

		T-101HAA (D)
Input		As indicated in the table above.
Output		$0.1 \sim 20 \mathrm{~mA}, 50 \mathrm{mV} \sim 10 \mathrm{~V}$
Auxiliary power supply	AC	$\begin{aligned} & 100,105,110,115,120 V^{+10} \% \\ & 200,210,220,230,240 V^{-15} \% \end{aligned}$
	DC	$24 \mathrm{~V} \pm 10 \%$

*1 An error may occur when the waveform of the input current is distorted.
For example, when the third harmonic content is 15%, the error is approx. $\pm 2.0 \%$.
*2 The power flow distinguishing function operates at 50% or more of the rated voltage. At less than 50% of the rated voltage, output with the input being regarded as a receiving current.
*3 For the power flow, the detected current phase is distinguished.
*4 A model with unidirectional output specifications can also be manufactured.

Input	Output
(Sending) (Receiving)	$0 \sim 50 \sim 100 \mathrm{mV}$
$-5 \sim 0 \sim 5 \mathrm{~A}$	$0 \sim 2.5 \sim 5 \mathrm{~V}$
$-1 \sim 0 \sim 1 \mathrm{~A}$	$4 \sim 12 \sim 20 \mathrm{~mA}$

Application example

-For measuring receiving or sending currents

Detection [Insulated]

Input/Output relationships

Receiving-sending phase relationship

Connection diagrams (Refer to p. 156 for outer dimensions.)

Note 1. For low-voltage circuits, grounding of the secondary sides of the instrument voltage transformer and current transformer is unnecessary.

Leakage Current Transducers [Insulated]

T-51/T-101 Series

Leakage current transducers detect leakage current in AC cables using a Zero-current transformer (ZCT) and output DC current or DC voltage proportional to the leaking current value.

T-51LG

ZCT

Delivery period classification

	Model name	Accuracy (grade)	ZCT Input (AC)		Output (DC)		Auxiliary power supply	Weight	Accessory (ZCT)	Delivery period classification
			Current	Frequency	Voltage or current and load	Ripple/Response speed				
૪્ఠ	T-51LG	1.0	15 mA 30 mA 100 mA 200 mA 500 mA 1A 5A	40Hz~2kHz	1 mA $: 0 \sim 5 \mathrm{k} \Omega$ 5 mA $: 0 \sim 1 \mathrm{k} \Omega$ $4 \sim 20 \mathrm{~mA}$ $0 \sim 600 \Omega$ 100 mV $: 5 \mathrm{k} \Omega \sim \infty$ 1 V $: 5 \mathrm{k} \Omega \sim \infty$ 5 V $: 5 \mathrm{k} \Omega \sim \infty$ 10 V $: 10 \mathrm{k} \Omega \sim \infty$ $1 \sim 5 \mathrm{~V}$ $: 5 \mathrm{k} \Omega \sim \infty$	1\% P-P or less 1s or less	110VAC ${ }_{-15}^{+10} \%$ 50 and 60 Hz Consumption VA: 3	$\begin{gathered} 0.4 \mathrm{~kg} \\ \text { (main unit only) } \end{gathered}$	$\begin{gathered} \text { ZT15B } \\ \text { ZT30B } \\ \text { ZT40B } \\ \text { ZT60B } \\ \text { ZT80B } \\ \text { ZT100B } \\ \text { (Specify) } \end{gathered}$	\bigcirc

Manufacturable range

		T-51LG
Input		$15 \mathrm{~mA} \sim 5 \mathrm{~A}$
Output		$0.1 \sim 20 \mathrm{~mA}, 50 \mathrm{mV} \sim 10 \mathrm{~V}$
Auxiliary power supply	AC	$100,105,110,115,120 \mathrm{~V}^{+110} \%$ $200,210,220,230,240 \mathrm{~V}^{-15}$
	DC	$24 \mathrm{~V} \pm 10 \%$

*1 Lead wire specifications (between ZCT and transducer)
Make sure to use shielded wires.
Connect the shield (drain line) to the " \pm " input terminal.

Shielded wire specifications	Allowable lead length
Two-core shielded wire of $0.5 \sim 2.0 \mathrm{~mm}^{2}$ (CVVS, etc.)	25 m or less one way

Usage example

*2 When a harmonic component is contained in the measured circuit, the T-51LG measures the effective value of the leakage current including the harmonic component.
*3 The ZCT is a dedicated accessory, and thus cannot be used in combinations other than those specified for the transducer.
*4 If the power supply frequency (fi) and output frequency (fo) are connected close to each other in the inverter circuit, a beat may occur in the leakage current and the output may fluctuate.
*5 Influence of external magnetic field
An error of approximately 0.4% may occur if an external magnetic field of $200 \mathrm{~A} / \mathrm{m}$ is applied to the main unit and ZCT.
*6 Insulation between the input circuit and output circuit.
The input terminals and output terminals of the main unit are not insulated.
The measurement circuit (input side) and output circuit can be insulated using an accessory ZCT.

Input/Output relationships

Connection diagrams (Refer to p. 156 for outer dimensions.)

Reference: Rated input current value selection method

1Monitoring leakage current due to insulation degradation of loaded equipment
Install the ZCT in the immediate vicinity of the loaded equipment.
The sensitivity current of an earth leakage circuit breaker is determined as indicated below. Select an input current value that is 1 to 1.5 times the value indicated below.

Example: Selecting a sensitivity current according to the electrical shock protection of an earth-leakage circuit breaker.

2 Monitoring leakage current in a long cable wiring

Even if the insulation resistance (meg) is normal, floating capacitance is present between the electric line and earth, and some leakage current flows constantly. This must be taken into account when selecting the input current value. An example of a 3phase, 3-wire 200 V circuit is shown in Table 1.
The rated current value is the sum of the value determined in Table 1 and the value determined in Reference 1 above.

Table 1 Leakage currents when 1 km of 600 V vinyl cable (IV) for \triangle connection $3 \phi \mathbf{3 w} 200 \mathrm{~V}$ cable wiring is installed.

Distance from earth portion	(A) 4 m or more	(B) 10 cm or more	(C) 1.5 mm or more	(D) Close contact
	-1st floor roof wiring of a wooden building -Wiring for 2nd floor or higher of a wooden building - Aerial wiring (excluding (C) or (D)	-Wiring inside a reinforced concrete line - Vinyl pipe wiring or exposed wiring inside a steel beam (excluding (C) or (D)	- Vinyl pipe-embedded work - Vinyl pipe work in close contact with steel beam inside a steel building	- Metal pipe wiring work - Metal duct work
$8 \mathrm{~mm}^{2}$ or less	$0.60 \mathrm{~mA} / \mathrm{km}$	$1.29 \mathrm{~mA} / \mathrm{km}$	$19.9 \mathrm{~mA} / \mathrm{km}$	100mA/km
14	0.66	1.44	22.1	110
22	0.72	1.55	23.9	120
38	0.81	1.75	26.9	135
50	0.91	1.97	30.3	152
80	1.02	2.21	34.0	170
100	1.14	2.46	37.9	189
150	1.25	2.72	41.8	209
250	1.46	3.16	48.6	243
325	1.52	3.29	50.7	253
500	1.71	3.69	56.8	284

*1 With respect to the values shown above, the value for rubber-insulated cable (RB) is approximately 70% and that for a three-core 600 V crosslinked polyethylene insulated cable (CV) is approximately 50%.
*2 With respect to the values shown above, the value in the case of 50 HZ is 84%.
*3 For the leakage current of other cables, multiply the value in Table 1 by a factor of 2.
*4 For the length of the cable run, add all parts beyond the point of installation of the ZCT.

Table 2
Leakage current conversion table

Type of cable wiring	Factor
1-phase 100V cable run	0.3
1-phase 3-wire 200V cable run	0.3
3-phase 415 cable run (Y connection)	0.7

Ordering method

Model name	$\begin{aligned} & \text { Input } \\ & \hline \text { Current } \\ & \hline \end{aligned}$	Output	Combined ZCT	Auxiliary power supply	Number of units
T-51LG	15 mA	4-20mA	ZT15B	110VAC	10

\square Leakage Current Transducers

T-51/T-101 Series

These transducers detect the leakage current in AC cables using a ZCT, attenuate the harmonic component contained in the current using a built-in low-pass filter, and output DC current or DC voltage proportional to the fundamental leakage current value.

-Applications

- Measurement of the fundamental leakage current in inverters, thyristor control circuits, or

T-51LGF

ZCT

Delivery period classification

Symbol	OStandard product	OQuasistandard product	\triangle Special product
Reterence delieypyperiod	Immediate delivery	Within 20 days	21 to 60 days

	Model name	Accuracy (grade)	ZCT Input (AC)		Output (DC)		Auxiliary power supply	Weight	Accessory (ZCT)	Delivery period classification
			Current	Frequency	Voltage or current and load	Ripple/Response speed				
	T-51LGF	1.0	15 mA 30 mA 100 mA 200 mA 500 mA 1A 5A	50 and 60 Hz	$1 \mathrm{~mA}: 0 \sim 5 \mathrm{k} \Omega$ 5 mA $: 0 \sim 1 \mathrm{k} \Omega$ $4 \sim 20 \mathrm{~mA}$ $: 0 \sim 600 \Omega$ $100 \mathrm{mV}: 5 \mathrm{k} \Omega \sim \infty$ 1 V $: 5 \mathrm{k} \Omega \sim \infty$ $5 \mathrm{~V}: 5 \mathrm{k} \Omega \sim \infty$ 10 V $: 10 \mathrm{k} \Omega \sim \infty$ $1 \sim 5 \mathrm{~V}$ $: 5 \mathrm{k} \Omega \sim \infty$	1\% P-P or less 1s or less	110VAC ${ }_{-15}^{+10 \%}$ 50 and 60 Hz Consumption VA: 5	0.4 kg (main unit only)	$\begin{gathered} \text { ZT15B } \\ \text { ZT30B } \\ \text { ZT } 40 B \\ \text { ZT } 60 B \\ \text { ZT } 80 B \\ \text { ZT100B } \\ \text { (Specify) } \end{gathered}$	\bigcirc

- Manufacturable range

	T-51LGF
Input	

*1 Lead wire specifications (between ZCT and transducer)
Make sure to use shielded wires.
Connect the shield (drain line) to the " \pm " input terminal.

Shielded wire specifications	Allowable lead length
Two-core shielded wire of $0.5 \sim 2.0 \mathrm{~mm}^{2}$ (CVVS, etc.)	25 m or less one way

*2 The ZCT is a dedicated accessory and thus cannot be used in combinations other than those specified for the transducers.
*3 When the power supply frequency (fi) and the output frequency (fo) are close to each other in the inverter circuit, beating may occur in the leakage current and the output may fluctuate.
*4 Influence of external magnetic field
An error of approximately 0.4% may occur due to application of an external magnetic field of $200 \mathrm{~A} / \mathrm{m}$ to the main unit and ZCT.
*5 Isolation between the input circuit and output circuit
The input and output terminals of the main unit are not insulated.
The measurement circuit (input side) and output circuit can be isolated by using the accessory ZCT.
*6 The grade indicates the accuracy when only a fundamental wave is input.
The influences of harmonic components are basically as follows.
-Third harmonic content 30%. . approx. $+2.0 \%$
-Fifth harmonic content 30%. approx. $+0.5 \%$

- Eleventh harmonic content 30% approx. +0.1\%
-Harmonic attenuation waveform of low-pass filter

Application example

(with Built-in Low-pass Filter) [Insulated]

Connection diagrams (Refer to p. 156 for outer dimensions.)

Outer dimensions of the ZCT unit

Ordering method

Model name	$\begin{gathered} \text { Input } \\ \hline \text { Current } \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Output } \\ \hline \text { Voltage or current } \\ \hline \end{array}$	Combined ZCT	Auxiliary power supply	Number of units
T-51LGF	500mA	4-20mA	ZT60B	110VAC	5

Voltage (Rise/Drop) Detectors [Insulated]

T-51/T-101 Series

<1-phase/3-phase>

These detectors instantaneously detect a voltage drop (or rise) compared to a previously set value, an open phase or a reverse phase (only for 3-phase) in 1-phase or 3-phase AC circuits and output a contact signal.
A "CAL signal" proportional to a preset value is output to enable accurate setting and checking of the value set.

T-101VDL

Applications
-Detecting flicker and instantaneous power interruption

- Monitoring computer power supply
- Detecting open phases, reverse phases (only 3-phase AC circuits)

Delivery period classification

Symbol	OStandard product	OQuasistandard product	\triangle Special product
Reterene deliveryperiod	Immediate delivery	Within 20 days	21 to 60 days

	Model name	Fun	Circuit	Rated voltage	Setting ran	ge and accu	acy	Dete	ction	Auxiliary power supply	Weight	Delivery period classification
					Variable setting range	CAL output	Accuracy	Method and detection time	Output			
$\stackrel{\times}{\circ}$	T-101VDL	Drop detection	1-phase or 3-phase	$\begin{aligned} & \text { 110VAC } \\ & \text { or } \\ & 220 \mathrm{VAC} \\ & 50 \text { and } 60 \mathrm{~Hz} \\ & \\ & \text { Consumption } \\ & \text { VA } \\ & \text { (between lines) } \\ & 110 \mathrm{~V}: 0.2 \\ & 220 \mathrm{~V}: 0.4 \end{aligned}$	$\begin{gathered} \text {-110V circuit } \\ 30 \sim 130 \mathrm{~V} \\ \hdashline-220 \mathrm{~V} \text { circuit } \\ 60 \sim 260 \mathrm{~V} \end{gathered}$	DC $0.3 \sim 1.3 \mathrm{~V}$ DC $0.6 ~ 2.6 \mathrm{~V}$	$\pm 5 \%$	- Method Voltage crest value detection method - Method Detection time 1 cycle	- Form no-voltage 1c relay contact -Contact capacity 250VAC 3A 30VDC 3A (resistive load)	110VAC ${ }_{15}^{+10} \%$ 50 and 60 Hz Consumption VA: 3	0.6kg	\bigcirc
	T-101VDH	Rise detection			$\begin{gathered} -110 \mathrm{~V} \text { circuit } \\ 90 \sim 180 \mathrm{~V} \\ \hdashline-220 \mathrm{~V} \text { circuit } \\ 180 \sim 360 \mathrm{~V} \end{gathered}$	DC $0.9 ~ 1.8 \mathrm{~V}$ DC 1.8~3.6V			30VDC 3A (resistive load) - Alarm indication lamp Red LED		0.6kg	\bigcirc

*1 Manufacturable range
Auxiliary power...100/110/120/200/220/240VAC (voltage tolerance ${ }_{-15}^{+10} \%$)
supply $\quad 24 \mathrm{VDC}$ (voltage tolerance $\pm 10 \%$), 100~120VDC (voltage tolerance ${ }_{-20}^{+15 \%}$)
*2 The detection accuracy is the percentage compared to the rated voltage.
*3 Output indicator lamp...A red lamp lights when the output contact is operating.
*4 Output time
-When the drop (or rise) time is 1 s or less $1 \pm 0.5 \mathrm{~s}$
-When the drop (or rise) time exceeds 1 s .. drop (or rise) time
-For open or reverse phaseduration of open or reverse phase
*5 A contact signal is output when the voltage of one phase drops significantly (to approx. 50% or less of the rated voltage) in a three-phase AC circuit.
*6 Due to the voltage crest value detection method, error may occur when the input waveform is distorted. Should this happen, calibrate the setting value in accordance with the actual equipment.
*7 A model that operates when abnormal operation lasts for three cycles can also be manufactured. (Detection time: $40 \sim 70 \mathrm{~ms}$)
*8 Continuous application of up to 180 V is possible for the 110 V rating, and up to 360 V is possible for the 220 V rating.
*9 Dielectric strength
-Between input terminal and contact output terminal: 2000VAC for 1 min . -Between contact output terminal and CAL output terminal: 2000VAC for 1 min. *10 CAL output load resistance: $5 \mathrm{k} \Omega \sim \infty$.
*11 Drop detection cannot be performed if the auxiliary voltage drops at the same time. The auxiliary power supply should thus be taken from a circuit where voltage drop does not occur.

Detection voltage setting (Please carefully read the accompanying instruction manual)

While measuring the output voltage between the (+) and (-) CAL outputs, set the output to the target value.

(Setting example)

Example	Specification	Rated voltage	Detection voltage	CAL output
1	Drop detection	110 VAC	90 VAC	0.9 VDC
2	Rise detection	220 VAC	260 VAC	2.6 VDC

Relationship between alarm value and CAL output

Connection diagrams (Refer to p. 156 for outer dimensions.)

Fig. 1 T-101VDL (1-phase)
T-101VDH (1-phase)

Fig. 2 T-101VDL (3-phase)
T-101VDH (3-phase)

T-51/T-101 Series

A ripple (AC component) of approximately $5 \% \mathrm{P}-\mathrm{P}$ is contained in the output of K Series models. Use this filter if the ripple is to be reduced to 1% P-P or less.

Delivery period classification

Symbol	OStandard product	OQuasistandard product	\triangle Special product
Reterencedediverperiode	Immediate delivery	Within 20 days	21 to 60 days

Model name	Input and output		Internal resistance	Output ripple	Weight	Delivery period classification
T-51FA	Voltage	$\pm 20 \mathrm{~V}$ max.	approx. 160Ω	1\% P-P or less	0.5kg	()
	Current	$\pm 30 \mathrm{~mA}$ max.				

*1 The H Series and S Series transducers do not require the use of T-51FA because the output ripple is $1 \% \mathrm{P}-\mathrm{P}$ or less.
*2 T-51FA is not necessary when a transducer and an indicator (Mitsubishi Electric L or Y models) are used in combination.

Warning

The internal resistance of T-51FA is approximately 160Ω. Please note that problems such as the examples listed below may occur.

Example 1: Combination with a K Series transducer (current output)

In the case shown to the left, the total load resistance connected to the output of the K Series transducer is $5.16 \mathrm{k} \Omega(5 \mathrm{k} \Omega+160 \Omega)$ and the output thus becomes smaller than the normal value.

Example 2: Combination with an H Series or S Series transducer (current output)

In the case shown to the left, the total load resistance connected to the output is $660 \Omega(500 \Omega+160 \Omega)$ and exceeds the allowable limit. For an output of $4 \sim 20 \mathrm{~mA}$, a load in the range of 0 to 440Ω can be connected to an H Series or S Series transducer.

Example 3: Combination with a voltage output transducer

In the case shown to the left, the output of the H Series or S Series transducer is divided between the 160Ω and $10 \mathrm{k} \Omega$ resistances, and thus the output becomes less than the normal value. The same phenomenon may also occur with a K Series transducer.

Connection diagrams (Refer to p. 156 for outer dimensions.)
(Fig. 1 T-51FA

Auxiliary Parts

T-51/T-101 Series

1. T-51/T-101 Series mounting parts

-Breaker mounting plate for distribution panel

* Please specify "BH-K plate" when purchasing.

10 sheets/box (32 plates/sheet)
-Breaker coupling/mounting tabs for distribution panel

*Please specify "BH-K coupling tabs" when purchasing.
80 sheets/box (8 tabs/sheet)

2. GR-2 standard resistor

Used to inspect resistance-bulb temperature transducers (T-51TP, T-101TPZ). Incorporates a resistance value corresponding to the rated input temperature.

\square Handling

T-51/T-101 Series

Method for mounting inside panels

Mounting work is to be performed by a person with the proper technological expertise.
-The following four types of mounting can be performed for models with standard specifications. The mounting parts can be used according to application.

Accessories

Mounting legs are packaged together with the main unit as accessories.

(1) Using mounting legs

(2) Using an IEC 35 mm rail
OApplicable IEC 35 mm rail

* When mounting using an IEC 35 mm rail, affix the unit using a stopper to prevent sliding to the side.
(3) Using a breaker mounting plate for distribution panel
©Outer shape of mounting plate
(4) Using a breaker coupling/mounting tabs for distribution panel
OOuter shape of mounting tabs

Snap-fit terminal cover

- The terminal cover is fitted onto the partition walls of the terminal section and can be easily removed.

The cover can also be removed by placing the tip of a standard screwdriver into a slot along the side edge of the terminal cover.

- To attach the terminal cover, simply push the cover back into place.
- A nameplate can be inserted in the slot along the side edge of the terminal cover to indicate a signal name or equipment number.
The customer is requested to provide the nameplate.

Outer shape	Nameplate dimensions
T-51	t0.8~ $1 \times 7.5 \times 45$
T-101	t0.8~ $1 \times 7.5 \times 95$

For safety reasons, use an insulating material as the material of the nameplate.

Power supply indicator (lamp)

An indicator (red LED) that shows current is being in supplied from an auxiliary power supply is provided (except for K Series).
Use this for daily inspection and as a guideline for judging whether or not the device is operating.

Transducers

\square Handling

T-51/T-101 Series

Wiring

Connection work is to be performed by a person with the proper technological expertise.

- Connections must be made correctly and securely. Be careful because erroneous wiring not only causes malfunctions and damages equipment, but may also spread problems to other power equipment.
- As the lead wires for connecting the output and load of a transducer, use two-core shielded wires or twistedpair wires to prevent malfunction and failure due to transmission noise and disturbance surge. If the transmission distance exceeds 100 m , current output specifications; for example, 4~20mA DC are recommended.
-Do not bring the output line close to or bundle it together with other power lines and the input lines (i.e., VT, CT and auxiliary power supply).
- Although the H Series, S Series, instrumentation and peripheral transducers are provided with auxiliary power supply terminals, if the voltage of the measured circuit is comparatively stable and within the allowable range of the auxiliary power supply, the voltage can be supplied from the measured circuit (VT secondary side). However, if the voltage of a generator is supplied from the measured circuit, the transducer output may fluctuate when the voltage during operation such as starting or stopping of the generator falls below the rated value.
-Ground the shield line of a shielded cable on the receiving side.
However, depending on the circumstances of external noise, it may be better to ground it on the transducer side.

- Connecting the input line

For temperature transducers, isolators, DC level transducers or other transducers that handle minute input signals, arrangements must be made to prevent interference such as noise and surge in the input line. For input lines such as these, in order to prevent incorrect operation and failure due to transmission or noise interference, please use shielded or twisted cables. Additionally, avoid installation alongside power lines or other noise sources as well as pairing different input lines with each other and other lines as shown below.

- Signal line connection distance

The connection distance depends on conditions such as the output signal line specifications of the transducer, signal line installation method, external magnetic field and electric field, and cannot be determined unconditionally. However, empirically speaking, the lengths shown below should be used as a reference.

Transducer output	Connection conditions	Connection distance
Voltage signal output	(A)	10 mm or less
	(B) If the signal line runs in parallel to a power line, secure the separation distance in the table on the right.	300 m or less
Current signal output	If the signal line runs in parallel to a power line, secure the separation distance shown in the table above. If this is not possible, provide electromagnetic shielding by using a shield plate or conduit.	2 km or less

Applicable crimp terminals and tightening torques

Series	Applicable crimp terminals	Tightening torque
T-51, T-101	Round crimp terminals (outer diameter: $\phi 8.5$ or less) for M4 screws	

T-51/T-101 Series

Short-circuiting and opening of output terminals

- Terminals for current output \qquad Although the terminals may be opened/short-circuited, a voltage of $8 \sim 50 \mathrm{~V}$ is generated when they are opened.
-Terminals for voltage output \qquad Although the terminals may be opened, do not short-circuit them.

Checking output

Release the load and measure with a voltmeter or ammeter using an input resistance within the specified load range (except the K Series).

K Series transducer

Measure with a voltmeter or ammeter using the same input resistance as the specified load resistance.
If such an indicator is not available, check using the following method.
<Voltage output>
Calculate the parallel resistance $\mathrm{RP}^{2} \mathrm{RP}=\frac{\mathrm{R}_{\mathrm{I}} / \mathrm{RL}_{\mathrm{L}}}{\mathrm{RI}_{\mathrm{I}}-\mathrm{RL}_{\mathrm{L}}}$
(RL: load resistance)
transducer

Calculate the serial resistance R. Rs =RL-RI.
(RL: load resistance)

Output adjustment

- Although the transducer output is adjusted according to the predetermined specifications, use the span adjuster or zero adjuster on the transducer surface to perform readjustment for matching.
Ordinarily, do not touch these except in special cases.
- With the T-51 and T-101 series, output adjustment is performed upon removing the cap. For dust prevention, put the cap back on after adjustment.
- Adjustment method
(1) With the span adjuster and zero adjuster, the output increases when turned clockwise and decreases when turned counterclockwise.
(2) With the zero adjuster, the output range is increased or decreased by a fixed value (approximately $\pm 0.3 \sim \pm 5 \%$ with respect to the span) as shown in the figure on the right.
(3) With the span adjuster, the output increases or decreases at the same proportion $(\pm 3 \% \sim \pm 15 \%$ with respect to the
 rated output) with zero input as the base point.
- Standard adjustment procedure

Apply the auxiliary power supply and perform zero adjustment so that the predefined output is output in a state where an input is not applied. Then, apply the rated input and perform span adjustment so that the rated output is output.
However, zero adjustment of a frequency transducer is performed with the lower-limit frequency being input, and span adjustment is performed with the upper-limit frequency being input.

- Do not apply an excessive force to the adjusters.

\square Outer Dimensions

-Fig. 1 T-51 Series

Fig. 2 T-101 Series

With multi-transducers, the required AC electric quantities can be measured by inputting the secondary sides of a VT and CT.

- Measurement elements

- Analog outputs

AC voltage, AC current, active power, reactive power
Power factor, Frequency
Harmonic voltage, harmonic current

- Pulse outputs

Active electric energy, reactive electric energy

- Block diagram

Features

- Various elements can be measured with one unit.
- A liquid-crystal display and buttons enable setting flexibility.
- Supports power flow measurement (sending, receiving) and can be used for monitoring power generating equipment.
(Active power, reactive power, power factor, active electric energy, reactive electric energy)
- Compact size realizes reducted mounting space.

Analog output patterns

Phase-wire system	Analog output pattern	Measurement element											
		Analog output										Pulse output	
		CH1	CH2	CH3	CH 4	CH5	CH6	CH7	CH8	CH9	CH10	CH11	CH12
3-phase 3-wire system 1-phase 3-wire system	P01	V_{12}	V_{23}	V_{31}	11	12	13	W	PF	var	Hz	Wh, Varh (set using switch)	
	P02	V_{12}	HV_{12}	V31	${ }_{1}$	I_{2}	H_{1}	W	PF	var	Hz		
	P03	V_{12}	V_{23}	V31	11	12	13	W	PF	HV ${ }_{12}$	H_{1}		
1-phase 2 -wire system	P01	V_{12}	HV_{12}	-	11	-	H_{1}	W	PF	var	Hz		

The output pattern is fixed at P01 for 1-phase, 2-wire systems.
HI: Harmonic current, HV: Harmonic voltage, $-:$ No measurement element (fixed at lower limit output)

[Insulated]

Specifications

Item			Specification									
Model name			T-120M									
Indicator rating			110V/220V 5A 50/60Hz									
Phase-wire system			Can be used in common with 1-phase, 2-wire, 1-phase, 3-wire and 3-phase, 3-wire systems									
Number of output points			Analog output: 10, pulse output: 2									
	AC voltage		Grade 0.5	1-phase, 2-wire, 3-phase, 3-wire	Secondary voltage 110V: 0~150V×VT ratio							
			Secondary voltage 220V: 0~300V									
			phase, 3-wire	0~150V/0~300V (set using switch) V31 is fixed at 300V								
	AC current			Grade 0.5	$0 \sim 5 \mathrm{~A} \times$ T ratio							
	Active power			Grade 0.5	0~+PkW or -P~0~+PkW (set using switch) (P: rated power) Positive side: Can be set in the range of approx. 40~120\% of the rated power. Negative side: Can be set in the range of approx. -20~-100\% of the rated power. (power flow measurement is enabled)		Phase-wire system Secondary voltage Rated voltage 1-phase 110 V $500 \mathrm{~W} \times \mathrm{VT}$ ratioXCT ratio					
			2-wire 220 V 1 1-phase 3-wire				$1000 W \times C$ ratio					
			1000W				XCT ratio					
	Reactive power					Grade 0.5	Q (lead) ~0~Q (lag) kvar (Q: rated reactive power) Can be set in the range of approx. 40~120\% of the rated reactive power. (power flow measurement is enabled)		3-phase 3-wire	110 V	1000WXVT ratioXCT ratio	
			220 V	2000W	XCT ratio							
			The unit for reactive power is var.									
	Power factor		Grade 1.5	Lead 0.5~1~Lag 0.5/Lead 0~1~Lag 0 (set using switch) (power flow measurement is enabled)								
	Frequency		Grade 1.0	$45 \sim 55 \mathrm{~Hz} / 55 \sim 65 \mathrm{~Hz}$ (set using switch)								
	Harmonic voltage	Overall (2nd to 15thorder) content (\%)	Grade 2.0	$0 \sim 30 \mathrm{VXVT}$ ratio (when 110 V is selected as secondary voltage)/0 60 V (when 220V is selected as secondary voltage) (Fixed at $0 \sim 30 \mathrm{~V}$ in the case of 1 -phase 3 -wire.) 0~20\% (switching between effective value and content (\%) is enabled)								
	Harmonic current	Overall (2nd to 15thorder) content (\%)	Grade 2.0	$0 \sim 1 \mathrm{~A} \times$ CT ratio/0~3A×CT ratio/0~5A×CT ratio (set using switch) $0 \sim 100 \%$ (switching between effective value and content (\%) is enabled)								
	Active electric energy		Complies with JIS C 1216 (ordinary class) (switching between sending and receiving directions is enabled)									
	Reactive	electric energy	Complies with JIS C 1263 (switching between sending and receiving directions is enabled)									
Analog output specifications (resistive load)			$4 \sim 20 \mathrm{~mA}(0 \sim 666 \mathrm{k} \Omega$) or $0 \sim 5 \mathrm{~V} / 1 \sim 5 \mathrm{~V}$ (set using switch) ($5 \mathrm{k} \Omega \sim \infty$), specify when ordering * With limiter function and zero and span adjustment functions									
Ripple			1\% P-P or less									
Response speed		Effective value	1s (demand time interval can be switched for current and power)									
		Harmonics	7s (demand time interval can be switched)									
		Demand time interval setting	0~60s (in 10s intervals), 1~10min (in 1min intervals), 10~30min (in 5min intervals) (0s setting is instantaneous output.)									
Pulse output specifications			Output form: semiconductor relay, no-voltage contact Contact capacity: Leak current for 110VAC or less, 0.1 A or less: $15 \mu \mathrm{~A}$ for 110 VAC Leak current for 100VDC or less, 0.1 A or less: $1 \mu \mathrm{~A}$ for 100 VDC (on resistance is 12Ω or less) Pulse width: $0.125 \mathrm{~s} / 0.5 \mathrm{~s} / 1 \mathrm{~s} \pm 20 \%$ (set using switch) Pulse units: Selected from 4 types according to full-load active power (set using switch; see "Setting method" for details)									
Display			Liquid-crystal display is lit while power is supplied (RUN, analog output pattern display) Various settings are possible (set as primary side values)									
Auxiliary power supply			Can use any of 100-240VAC ${ }_{-15}^{+10} \%, 50-60 \mathrm{~Hz}, 100 \mathrm{VDC}{ }_{-25}^{+40} \%$									
Consumption VA		Voltage circuit	0.1VA when approx. 110V, 0.2VA when approx. 220V (all phases)									
		Current circuit	Approx. 0.1VA (all phases)									
		Auxiliary power supply	Approx. 10VA (110VAC), approx. 12VA (220VAC), approx. 6W (100VDC)									
Outer dimensions (mm)			W120XH100XD101									
Terminal screws			Input terminals: M4, output terminals: M3.5									
Weight			0.6 kg									
Commercial frequency withstand voltage			Between inputoutput terminals as a whole and outer casing, between auxiliary power terminals as a whole and outer casing Between voltage input terminals as a whole and current input terminals as a whole, between auxiliary power terminals as a whole and input terminal as a whole Between input terminals as a whole and output terminals as a whole, between auxiliary power terminals as a whole and output terminal as a whole						$\begin{aligned} & \hline 2000 \mathrm{VAC} \\ & (50 / 60 \mathrm{~Hz}) \\ & 1 \mathrm{~min} \end{aligned}$			
Insulation resistance			$10 \mathrm{M} \Omega$ or more at the same locations as the above (500VDC)									

Rema (1) Regarding
(1) Regarding the harmonic output, measurement of harmonics cannot be performed unless the fundamental wave content is 75% or more of the rated voltage.
(2) An analog output of approximately 100% or more may be output for a few seconds immediately after turning on the auxiliary power supply (until the internal voltage stabilizes).

Mounting method

Four types of mounting are available.
The mounting methods are the same as those of the T-51 and T-101 series. Refer to the "Mounting method for T-51 and T-101 series" on p.151.
Names and number of accessories
Mounting legs …........... 4 pcs.
Instruction manual $\cdot \cdots1$ copy

Operation method

(1) Screen during operation

PO
 $\left[\begin{array}{l}\approx \mid \text { RIS ITEST } \\ \text { The analog output }\end{array}\right.$ pattern is displayed.

- The RUN indication is lit.
(2) Method for checking settings (button functions)

\square When the \mp button or - button is pressed for 1 s or more, the setting value checking mode is entered. The respective setting values are displayed by consecutively pressing the \oplus button or - button (refer to "Setting method" in regard to the screen).

\hookrightarrow Operation screen \longleftrightarrow Pulse output $\mathrm{CH} 12 \longleftrightarrow$ Pulse output $\mathrm{CH} 11 \longleftrightarrow$ Harmonic current \longleftrightarrow Harmonic voltage \longleftrightarrow Frequency \longleftrightarrow
- The active power measurement range (negative side) is displayed when the special bidirectional setting is set for active power.
- The harmonic voltage and harmonic current are not displayed when the analog output pattern is P01.
- The reactive power measurement range and frequency are not displayed when the analog output pattern is P 03 .
\square Setting Method

-Setting method

[Display unit]
Operation indicator
Setting indicators are lit when setting
Lit during operation.
Output channel display
Displays the output channel to be set.
Pulse output element display Displays the pulse output element to be set.
Output limit setting indicator
Lit when setting the output limit.
Harmonics measurement setting indicator Lit when setting harmonics measurement.
Demand time interval setting indicator Lit when setting the demand time interval for active power, current and harmonics.
Harmonics measurement pattern display Displays the measurement pattern to be set. \%: content (\%) RMS: effective value

1 Setting mode
Press the SET button for 2s or more to enter the set up mode (setting menu will be displayed and "End" will blink).
(Use the \mp and \rightarrow buttons to select the item to be set, press the (SET) button to display the set up screen,) and then use the \oplus and - buttons to set the contents.
When the SET button is pressed for 1s or more while setting an item, setting of the remaining items is skipped and returns to the setting menu.

2 Basic settings (analog output pattern, phase-wire system, frequency, primary/secondary voltages, primary current)

Active power measurement direction setting indicator
Indicates the active power measurement direction to be set.
SINGLE: unidirectional, DOUBLE: bidirectional,
DOUBLE SPECIAL: special bidirectional
Indication of measurement direction of power factor and reactive power during power flow
Indicates the measurement direction of power factor and reactive power during power flow.
DOUBLE: Without power flow expansion. SPECIAL: With power flow expansion.
Special primary voltage/current setting indicator
[Button functions]

(SET : The set up mode is entered when this is pressed for 2 s or more. Used for selecting an item to be set, and setting various items.
\pm or - : Used for increasing/decreasing a setting value during set up, and for checking setting values.
RETURN : Used for selecting (setting back) an item to be set.

3 Analog output settings

The underline in the setting specifications indicates the default value at the time of factory shipment.

4 Pulse output settings (pulse output elements, pulse unit, pulse width)

5 Analog output adjustment (zero adjust, span adjust)
(1) Setting menu

6 Harmonics measurement settings (harmonic voltage, harmonic current)

7 Demand time interval setting (demand power, demand current, harmonic demand voltage/current)

8 Analog output test

Remarks: Refer to "Operation method" on p. 158 regarding the method for checking settings.

Input/Output relationships

Output		0~5V	4~20mA, 1~5V
	Voltage		
	Current		
	Active power		
	Reactive power	Example in the case of 1000var AC input \rightarrow	Example in the case of 1000var
	Power factor		
	Frequency		
	Harmonic voltage		
	Harmonic current		

Outer Dimensions/Connection Diagrams

OOuter dimensions, and names and functions of respective parts

Connection diagrams

Fig. 1 3-phase 3-wire system (with VT and CT)

Fig. 2 1-phase 2-wire system (with VT and CT)

Fig. 3 1-phase 3 -wire system (with CT)
-For low-voltage circuits, grounding of the secondary sides of the instrument voltage transformer and current transformer is unnecessary
-Make sure to use after grounding the earth terminal ($\stackrel{\perp}{=}$). Provide a D earth (earth resistance: 100Ω or less) for grounding. Inadequate grounding may
cause a malfunction.
-As the lead wires for connecting the output and load of a transducer, use two-core shielded wires or twisted-pair wires to prevent malfunction and failure due to transmission noise and disturbance surge. If the transmission distance exceeds 100 m , current output specifications are recommended.

- Do not bring the output line close to or bundle it together with other power lines or the input lines (VT, CT, and auxiliary power supply).
- Ground the shield line of a shielded cable on the receiving side

However, depending on the circumstances of external noise, it may be better to ground it on the transducer side.

Ooltage or current
$0-5 \mathrm{~V}$

\square Special Application Transducers

T-120HA harmonics transducers [Insulated]

Applications

Harmonics transducers perform constant monitoring of the harmonic voltage and harmonic current of a power system, and help to prevent disorder due to harmonics in advance.

- Features

- Various harmonics measurement elements (10 elements) can be measured with one unit.
- The harmonic voltage and current can be measured with one unit.
-The harmonic voltage (current) effective value and content (\%) can be measured (*).
-The instantaneous value and average value can be measured. (Switching)
*: Output selected by setting

Usage example

Analog output patterns

Analog output patterns	Measurement element									
	CH1	CH 2	CH3	CH 4	CH5	CH6	CH 7	CH8	CH9	CH10
P01	$\mathrm{V}_{(1)}$	$\mathrm{V}_{(3)}$	$\mathrm{V}_{(5)}$	$V_{(7)}$	$\mathrm{V}_{(11)}$	$\mathrm{V}_{(13)}$	$\Sigma \mathrm{V}_{\mathrm{H}}$	Elh	Vrms	Irms
P02	${ }_{\text {(1) }}$	$1(3)$	$1(5)$	$\mathrm{l}_{(7)}$	$\mathrm{I}_{(11)}$	$\mathrm{l}_{(13)}$	$\Sigma \mathrm{V}_{\mathrm{H}}$	$\mathrm{\Sigma lh}$	Vrms	Irms
P03	$\mathrm{V}_{(3)}$	$\mathrm{V}_{(5)}$	$\mathrm{V}_{(7)}$	$1(3)$	1 (5)	$\mathrm{l}_{(7)}$	$\Sigma \mathrm{V}_{\mathrm{H}}$	I/ H	Vrms	Irms

(1) (3) (5) (7)(11)(13): order of harmonic wave, Σ : overall harmonic wave, rms: overall effective value

Specifications

Item			Specification			
Model name			T-120HA			
Indicator rating			110V/220V 5A 50/60Hz			
Phase-wire system			1-phase, 2-wire system			
Number of output points			Analog output: 10 points			
	AC voltage	Effective value	Grade 0.5	110/220V	Secondary voltage 110V: 0~150V \times VT ratio Secondary voltage 220V: 0~300V	
		Fundamental wave component	Grade 2.0			
	AC current	Effective value	Grade 0.5	5A	0~5AXCT ratio	
		Fundamental wave component	Grade 2.0			
	Harmonic voltage	Orders measured	3rd, 5th, 7th, 11th, 13th, and overall (2nd to 15th-order) harmonics			
		n-th order (overall) effective value	Grade 2.0	110/220V	Secondary voltage 110V: 0~30V×VT Secondary voltage 220V: 0~60V	
		Content (\%)			0~20\% (switching between effective value and content (\%) is enabled)	
	Harmonic current	Orders measured	3rd, 5th, 7th, 11th, 13th, and overall (2nd to 15th-order) harmonics			
		n-th order (overall) effective value	Grade 2.0	5A	0~1AXCT ratio/0~3AXCT ratio/0~5AXCT ratio	
		Content (\%)			$0 \sim 100 \%$ (switching between effective value and content (\%) is enabled)	
Analog output specifications (resistive load)			$4 \sim 20 \mathrm{~mA}(0 \sim 600 \Omega)$ or $0 \sim 5 \mathrm{~V} / 1 \sim 5 \mathrm{~V}$ (set using switch) ($5 \mathrm{k} \Omega \sim \infty$), specify when ordering *With limiter function and zero and span adjustment functions			
Ripple			1\% P-P or less			
Response speed		Overall effective value	1s			
		Fundamental wave component	7s			
		n-th order/content (\%)	7 s (demand time interval can be set)			
		Demand time intervals	0~60s (in 10s intervals), 1~10min (in 1min intervals), 10~30min (in 5min intervals)			
Display			Liquid-crystal display lights when electricity is supplied (RUN, analog output pattern display). Various settings are possible (set as primary-side values).			
Auxiliary power supply			Can use any of 100-240VAC ${ }_{-15}^{+10} \%, 50-60 \mathrm{~Hz}, 100 \mathrm{VDC}{ }_{-25}^{+40} \%$			
Consumption VA		Voltage circuit	0.1VA when approx. 110V, 0.2VA when approx. 220 V (all phases)			
		Current circuit	Approx. 0.1VA (all phases)			
		Auxiliary power supply	Approx. 10VA (110VAC), approx. 12VA (220VAC), approx. 6W (100VDC)			
Outer dimensions (mm)			W120XH100×D101			
Terminal screws			Input terminals: M4, output terminals: M3.5			
Weight			0.6 kg			
Commercial frequency withstand voltage			Between input/output terminals as a whole and outer casing Between auxiliary power terminals as a whole and outer casing Between voltage input terminals as a whole and current input terminals as a whole Between auxiliary power terminals as a whole and input terminal as a whole Between input terminals as a whole and output terminals as a whole Between auxiliary power terminals as a whole and output terminal as a whole			$\begin{aligned} & 2000 \mathrm{VAC} \\ & (50 / 60 \mathrm{~Hz}) \\ & 1 \mathrm{~min} \end{aligned}$
Insulation resistance			$10 \mathrm{M} \Omega$ or more at the same locations as above (500VDC)			

Remarks (1) Regarding harmonic output, the measurement of harmonics cannot be performed unless the fundamental wave content is 75% or more of the rated voltage.
(2) An analog output of approximately 100% or more may be output for a few seconds immediately after turning on the auxiliary power supply (until the internal voltage stabilizes).

Mounting method

Four types of mounting are available.
The mounting methods are the same as those of the T-51 and T-101 series. Refer to the "Mounting method for T-51 and T-101 series" on p.151.
Names and numbers of accessories
Mounting legs •..............4pcs.
Instruction manual $\cdot \cdots1$ copy

Operation method

(1) Screen during operation

(2) Method for checking settings (button functions)

When the \pm button or - button is pressed for 1 s or more, the setting value checking mode is entered. The respective setting values are displayed by consecutively pressing the \oplus button or - button (see the "Setting method" for the screen).
\rightarrow Primary voltage \longleftrightarrow Primary current \longleftrightarrow Harmonic voltage \longleftrightarrow Harmonic current \longleftrightarrow Operation screen \leftrightarrows

\square Special Application Transducers

T-120HA harmonics transducers [Insulated]

-Setting Method

[Display unit]

1 Setting mode
Press the SET button for 2 s or more to enter the set up mode (setting menu will be displayed and "End" will blink).
(Use the \oplus and - buttons to select the item to be set, press the SET button to display the set up screen,) and then use the + and - buttons to set the contents.
When the SET button is pressed for 1 s or more while setting an item, setting of the remaining items is skipped and returns to the setting menu.

2 Basic settings (analog output pattern, primary/secondary voltages, primary current)

 End
(mello
 3303ξ
Wactuon xhol

Analog output pattern	Measurement elements									
	CH 1	CH 2	CH3	CH 4	CH5	CH6	CH7	CH8	CH9	CH 10
P01	$\mathrm{V}_{(1)}$	$V_{(3)}$	$V_{(5)}$	$V_{(7)}$	$V_{(11)}$	$\mathrm{V}_{(13)}$	$\Sigma \mathrm{V}_{\mathrm{H}}$	$\Sigma I_{\text {H }}$	Vrms	Irms
P02	$\mathrm{I}_{(1)}$	$\mathrm{I}_{\text {(3) }}$	$\mathrm{I}_{(5)}$	$1{ }_{\text {(7) }}$	$\mathrm{I}_{(11)}$	$\mathrm{I}_{(13)}$	$\Sigma \mathrm{V}_{\mathrm{H}}$	ΣI_{H}	Vrms	Irms
P03	$\mathrm{V}_{(3)}$	$\mathrm{V}_{(5)}$	$V_{(7)}$	$I_{(3)}$	$\mathrm{I}_{(5)}$	$\mathrm{I}_{(7)}$	$\Sigma \mathrm{V}_{\mathrm{H}}$	ΣI_{H}	Vrms	rms

(1) (3) (5) (7) (11) (13): order of harmonic wave,
Σ : Overall harmonic wave, rms: Overall effective value
$\pm \bigoplus$ buttons (3)Set the secondary voltage.

$\oplus \rightarrow$ buttons

[Button functions]

(SET : The set up mode is entered when this is pressed for 2s or more. Used for selecting an item to be set, and setting various items.
\pm or - : Used for increasing/decreasing a setting value during set up, and for checking setting values.
RETURN :Used for selecting (setting back) an item to be set.

The underline in the setting specifications indicates the default value at the time of factory shipment.

3 Analog output settings (Analog output $1-5 \mathrm{~V} / 0-5 \mathrm{~V}$, output limit)

4 Analog output adjustment (zero adjust, span adjust)

\square Special Application Transducers

T-120HA harmonics transducers [Insulated]

-Setting method

5 Harmonics measurement settings (harmonic voltage, harmonic current)

6
Demand time interval setting (harmonic demand time interval)

7 Analog output test

Remarks: Refer to "Operation method" on $p .166$ regarding the method for checking settings.
-Outer dimensions, and names and functions of respective parts

Connection diagrams

Ordering method

\square Special Application Transducers

Active power/active energy transducers [Insulated]

Applications

Needs for measuring power and electric energy in various power generating equipment and factory production lines, monitoring operating conditions of power generating equipment, ascertaining generated active electric energy, and performing energy-specific unit management of factory production lines are increasing in recent years.
Needs for detailed monitoring of electricity usage quantities according to respective divisions for carrying out factory energysaving measures and ascertaining the results of energy-saving measures are also increasing.
The Mitsubishi Electric T-51WWH transducer can be used for such applications.

Features

-Compact and lightweight

- The outer dimensions are $50(\mathrm{~W}) \times 100(\mathrm{H}) \times 118 \mathrm{~mm}(\mathrm{D})$.
- Weights only 0.5 kg .

Does not take up mounting space.
-Dual output of active power and active electric energy

- Can measure the active power and active electric energy of a circuit and deliver two outputs with one unit. A signal of $4 \sim 20 \mathrm{~mA}$ DC is output for active power and a pulse signal is output for active electric energy.
- Less expensive, more compact and more space-saving than a watthour meter and active power transducer combination.

Outer dimensions

■Usage examples

Monitoring active power used by a production line

Specifications

Item	Specification	
Model name	T-51WWH	
Measurement element	Power	Electric energy
Input range	0~1000W (for 110V 5A input) 0~2000W (for 220V 5A input)	-
Phase-wire system	3-phase, 3-wire system or 1-phase, 3-wire system (Please specify when ordering)	
Ratings	$110 \mathrm{~V} 5 \mathrm{~A} 50-60 \mathrm{~Hz}$ or $220 \mathrm{~V} 5 \mathrm{~A} 50-60 \mathrm{~Hz}$ (Please specify when ordering)	
Output	4~20mA DC (analog output) Load resistance: 0~525	(1) Pulse unit: $\square \mathrm{kWh} / \mathrm{P}$ (primary side) (2) Pulse output (1)Output form : open collector (2)Output current : Iol 30mA max (3)Withstand voltage between collector (3) Measure only in positive direction
Accuracy	0.5	(Normal)
Auxiliary power supply	Unnecessary (supplied from input voltage between $\mathrm{P}_{1 \sim} \mathrm{P}_{3}$, load: 5VA)	
Weight	0.5 kg	
Consumption VA	$\begin{array}{lll}\text { Current circuit } & \mathrm{I}_{1} & 0.1 \mathrm{VA} \\ & \mathrm{I}_{3} & 0.1 \mathrm{VA}\end{array}$	$\begin{array}{lll}\text { Voltage circuit } & \mathrm{P}_{1}-\mathrm{P}_{2} & 2.5 \mathrm{VA} \\ & \mathrm{P}_{2}-\mathrm{P}_{3} & 2.5 \mathrm{VA}\end{array}$

Manufacturable range

(1) Secondary side (available) power value

Input	Secondary side power value (available power value)	
	Standard specifications	Manufacturable range
110 V 5 A	$0-1000 \mathrm{~W}$ (standard specification)	VT, CT secondary-side power value: $500 \sim 1200 \mathrm{~W}$
220 V 5 A	$0-2000 \mathrm{~W}$ (standard specification)	VT, CT secondary-side power value: $1000 \sim 2400 \mathrm{~W}$

*VT, CT secondary side power value= $\frac{\text { primary-side power value (W) }}{\text { (WCT }}$ (available power value)

Connection diagram

Note 1. For low-voltage circuits, grounding of the secondary sides of the instrument voltage transformer and current transformer is unnecessary.
(2) Pulse unit Specify from among three of pulse units according to the full-load active power

Full-load active power (kw)	1~less than 10kW	10~less than 100kW	100~less than 1000kW	1000~less than 10000kW	10000~less than 100000kW
Pulse unit	$0.001 \mathrm{kWh} / \mathrm{P}$	$0.01 \mathrm{kWh} / \mathrm{P}$	$0.1 \mathrm{kWh} / \mathrm{P}$	$1 \mathrm{kWh} / \mathrm{P}$	$10 \mathrm{kWh} / \mathrm{P}$
(specify)	$0.01 \mathrm{kWh} / \mathrm{P}$	$0.1 \mathrm{kWh} / \mathrm{P}$	$1 \mathrm{kWh} / \mathrm{P}$	$10 \mathrm{kWh} / \mathrm{P}$	$100 \mathrm{kWh} / \mathrm{P}$
	$0.1 \mathrm{kWh} / \mathrm{P}$	$1 \mathrm{kWh} / \mathrm{P}$	$10 \mathrm{kWh} / \mathrm{P}$	$100 \mathrm{kWh} / \mathrm{P}$	$1000 \mathrm{kWh} / \mathrm{P}$

Example: 3-phase, 3-wire 200V 100/5A circuit
Full-load active power $=\frac{\sqrt{3} \times 200 \times 100}{1000}=34.6 \mathrm{~kW}$ Based on the above table, specify from among $0.01 \mathrm{kWh} / \mathrm{P}, 0.1 \mathrm{kWh} / \mathrm{P}$ and $1 \mathrm{kWh} / \mathrm{P}$.

Accessories

	One main unit	Two mounting legs

Ordering method

Model name	Phase-wire	VT ratio	CT ratio	Primary side power value	Output	$\begin{gathered} \text { Output } \\ \text { pulse unit } \end{gathered}$	$\begin{array}{\|c\|c\|} \hline \text { Number } \\ \text { of unis } \end{array}$
T-51WWH	3P3W	440/110V	750/5A	0~600kW	4~20mA	1 kW	3

T For $\triangle-Y$ connection, please specify as such.

OUsage

- Install transducers in panels and use them as interface equipment for inputting DC signals corresponding to items measured into various devices such as central monitor panels, data loggers and measuring equipment.
- Transducers do not have any particular items requiring operation.

-Care

During periodic maintenance that accompanies power interruption, use a soft cloth to wipe off the dust and debris that collects on the surface of the transducer.
In the case of severe soiling, dip a cloth in a neutral detergent diluted with water, wring well, and then wipe the transducer surface.
Do not wipe using a chemically-treated dust cloth or cleanser such as benzene or thinner, otherwise discoloration or deformation of the surface may occur.

OStorage

Store transducers according to the following procedures. Removal work is to be performed by a person with proper technological expertise in electric works.

1 Removing a transducer

- Turn off the power to the circuits (input, auxiliary power) connected to the transducer. Confirm that no voltage is applied.
-Use a screwdriver to loosen and remove the terminal screws of the transducer.
-Perform the "Method for mounting" procedure on p. 151 in reverse to remove the transducer.
(2) Storage

For storage, refer to section 8 on p. 109.

Maintenance and Inspection

Request for maintenance and inspection

Perform maintenance and inspection as below to ensure continued use of transducers. (Inspection while power is interrupted must be performed either every six months or every year.)

1 Daily inspection
-Are there any broken parts in the outer peripheral portion?

- Are there any abnormal noises or odors?

OHave debris, dust or water drops accumulated?
-For the T-51 and T-101 series, is the power-on indicator lamp lit?
-For the T-120 series, is there any abnormality in the LCD screen?
Ols there any indication, record or alarm related to abnormal measurement data in central monitor, data logger or measurement equipment, that receives transducer output signals?

2 Periodic inspection

Inspect the following in addition to the above.
Ols there any abnormality in the output of the transducer? (Check during inspection of receiving/transforming equipment or plant.)
-Are any of the terminal screws loose? (Before performing this check, ensure that equipment is in the power interrupted state.)
Ols there any overheating or deformation due to stress to various components such as the terminals or outer casing?
Refer to "Checking output" on p. 155 concerning inspection procedures.

Performance

*1 For models with the "both" specified, the \% with respect to basal value that is the maximum value of the mutual difference between output values when the frequency is changed from 45 to 65 Hz .

Power transducers								
Reactive power transducers		Phase angle transducers		Power-factor transducers		Frequency transducers		Voltage phase angle transducers
T-101HVAR	T-101SVAR	$\begin{aligned} & \text { T-101HPA } \\ & \text { T-101HPA(U) } \end{aligned}$	T-101SPA(U)	T-101HPF(U)	T-101SPF(U)	T-51HF	T-101SF	T-101SY
0.5	0.25	2.0	1.0	3.0	2.0	1.0	0.5	1.0
$\pm 0.5 \%$	± 0.25	$\begin{gathered} \pm 2 \% \\ \left(\pm 2.4^{\circ}\right) \end{gathered}$	$\begin{gathered} \pm 1 \% \\ \left(\pm 1.2^{\circ}\right) \end{gathered}$	$\pm 3 \%$	$\pm 2 \%$	$\begin{gathered} \pm 1 \% \\ (\pm 0.1 \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} \pm 0.5 \% \\ (\pm 0.05 \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} \pm 1 \% \\ \left(\pm 1.2^{\circ}\right) \end{gathered}$
$\pm 0.5 \%$	± 0.25	$\begin{gathered} \pm 2 \% \\ \left(\pm 2.4^{\circ}\right) \end{gathered}$	$\begin{gathered} \pm 1 \% \\ \left(\pm 1.2^{\circ}\right) \end{gathered}$	$\pm 3 \%$	$\pm 2 \%$	$\begin{gathered} \pm 1 \% \\ (\pm 0.1 \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} \pm 0.5 \% \\ (\pm 0.05 \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} \pm 0.7 \% \\ \left(\pm 0.84^{\circ}\right) \end{gathered}$
$\begin{gathered} \pm 0.25 \% \\ \text { (both) } \end{gathered}$	$\pm 0.13 \%$	$\begin{gathered} \pm 1 \% \\ \left(\pm 1.2^{\circ}\right) \end{gathered}$	$\begin{aligned} & \pm 0.5 \% \\ & \left(\pm 0.6^{\circ}\right) \end{aligned}$	$\pm 1.5 \%$	$\pm 1 \%$	-	-	$\begin{aligned} & \pm 0.5 \% \\ & \left(\pm 0.6^{\circ}\right) \end{aligned}$
$\pm 0.25 \%$	$\pm 0.13 \%$	$\begin{gathered} \pm 1 \% \\ \left(\pm 1.2^{\circ}\right) \end{gathered}$	$\begin{aligned} & \pm 0.5 \% \\ & \left(\pm 0.6^{\circ}\right) \end{aligned}$	$\pm 1.5 \%$	$\pm 1 \%$	$\begin{gathered} \pm 0.5 \% \\ (\pm 0.05 \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} \pm 0.25 \% \\ (\pm 0.025 \mathrm{~Hz}) \end{gathered}$	$\begin{aligned} & \pm 0.5 \% \\ & \left(\pm 0.6^{\circ}\right) \end{aligned}$
-	-	$\begin{gathered} \pm 2 \% \\ \left(\pm 2.4^{\circ}\right) \end{gathered}$	$\begin{gathered} \pm 1 \% \\ \left(\pm 1.2^{\circ}\right) \end{gathered}$	$\pm 3 \%$	$\pm 2 \%$	-	-	-
$\pm 0.5 \%$	$\pm 0.25 \%$	-	-	-	-	-	-	-
120% of rated input voltage 120% of rated current		120\% of rated input voltage, 120% of rated current				120\% of rated voltage		
Supply electricity for 10s duration 10 times at 10 s intervals		Supply electricity for 10 s duration 10 times at 10s intervals				Supply electricity for 10 s duration 10 times at 10 s		
Supply electric 10 times	10s duration intervals	Supply electricity for 10 s duration 10 times at 10s intervals				-		
Supply electri 5 times a	3s duration intervals	Supply electricity for 3 s duration 5 times at 5 min intervals				-		
2000VAC for 1 min								
2000VAC for 1 min								
2000VAC for 1 min								
2000VAC for 1 min								
$10 \mathrm{M} \Omega$ or more (at relative humidity of 80% or less)								
$\pm 1500 \mathrm{~V}$, pulse width: $1 \mu \mathrm{~s}$								
$\pm 1500 \mathrm{~V}$, pulse width: 1μ s (current input circuits exempt)								
$490 \mathrm{~m} / \mathrm{s}^{2}$ (50G), in 3 directions, 6 times with mounting legs mounted								
16.7 Hz , double amplitude 4 mm , in 3 directions, 1 h each (corresponding to approx. 2.2 G) with mounting legs mounted								
$-10 \sim 50^{\circ} \mathrm{C}$ (daily mean temperature: $35^{\circ} \mathrm{C}$ or less)								
$-20 \sim 60^{\circ} \mathrm{C}$								
30~85\% relative humidity								

*2 The performance value of the phase angle transducer in parenthesis () corresponds to input conversion values for inputs of LEAD $60^{\circ} \sim 0 \sim L A G 60^{\circ}$.
*3 The performance value of the frequency transducer in parenthesis () corresponds to input conversion values for inputs of 45 to 55 Hz or 55 to 65 Hz .
*4 The performance value of the voltage phase angle transducer in parenthesis () corresponds to input conversion values for inputs of LEAD $60^{\circ} \sim 0 \sim L A G 60^{\circ}$.

Performance

Classification				Power transducers												
Product name				DC level transducers	DC reverse voltage transducers	Isolators	Highspeed isolators	Limiter	Adders	Temperature transducers				First-order lag transducers		
				Resistance bulb						Thermocouple						
	odel ame		Box		T-51DL	T-51DR	T-101IS	T-101ISQ	T-51LM	T-101AD	T-51TP	T-101TPZ	T-101TC	T-101TCZ	T-51DS	
Grade				0.25	0.25	0.25	0.25	0.25	0.5	0.5	0.5	0.5	0.5	0.5		
	Tolera		\% with respect to basal value	$\pm 0.25 \%$	$\pm 0.5 \%$											
	Influe temp	ce of rature	\% with respect to basal value upon change of $\pm 10^{\circ}$ from $23^{\circ} \mathrm{C}$	$\pm 0.25 \%$	$\pm 0.5 \%$											
	Influe frequ	ce of ncy *1	\% with respect to basal value upon change of $\pm 5 \%$ from rated frequency	-	-	-	-	-	-	-	-	-	-	-		
	Influe voltag	ce of	\% with respect to basal value upon change of $\pm 10 \%$ from rated voltage	-	-	-	-	-	-	-	-	-	-	-		
	Continuous overload			120\% of rated input value												
	Instantaneous overload		1.5 times rated voltage	Supply electricity for 10s duration 10 times at 10s intervals (temperature transducers excluded)												
			2 times rated current	Supply electricity for 10s duration 10 times at 10s intervals (temperature transducers excluded)												
	Withstand voltage		between electric circuit and outer casing	2000VAC for 1 min *2												
			between input circuit and auxiliary power supply	2000 VAC for 1 min												
			between input circuit and output circuit			2000VAC/DC for 1 min	2000VAC/DC for 1 min		-		2000VAC/DC for 1 min	-	$2000 \mathrm{VAC} / \mathrm{DC}$	-		
			between output circuit and auxiliary power supply	2000VAC for 1min												
	Insula resist		Test voltage: 500VDC	$10 \mathrm{M} \Omega$ or more (at relative humidity of 80% or less)												
	Noise resistance		Auxiliary power supply	$\pm 1500 \mathrm{~V}$, pulse width: $1 \mu \mathrm{~s}$												
			Input	$\pm 500 \mathrm{~V}$, pulse width: 1μ (current input specifications are exempt)												
	Impact resistance			$490 \mathrm{~m} / \mathrm{s}^{2}$ (50G), in 3 directions, 6 times with mounting legs mounted												
	Vibration resistance			16.7 Hz , double amplitude 4 mm , in 3 directions, 1 h each (corresponding to approx. 2.2 G) with mounting legs mounted												
	Usage temperature range			$-10 \sim 50^{\circ} \mathrm{C}$ (daily mean temperature: $35^{\circ} \mathrm{C}$ or less)												
	Storage temperature range			$-20 \sim 60^{\circ} \mathrm{C}$												
	Humidity			30~85\% relative humidity												

*1 For models with the "both" specified, the \% with respect to basal value that is the maximum value of the mutual difference between output values when the frequency is changed from 45 to 65 Hz .

Peripheral transducers				
$\begin{aligned} & \text { AC current demand } \\ & \text { transducers } \\ & \text { (moderate time interval) } \end{aligned}$	$\begin{aligned} & \text { AC voltage demand } \\ & \text { transducers } \\ & \text { (moderate time interval) } \end{aligned}$	Current transducers with power flow detection	Leakage current transducers	Voltage drop detectors Voltage rise detectors
T-101HAA(DS)	T-101HAV(DS)	T-101HAA(D)	$\begin{aligned} & \text { T-51LG } \\ & \text { T-51LGF } \end{aligned}$	$\begin{aligned} & \text { T-101VDL } \\ & \text { T-101VDH } \end{aligned}$
0.5	0.5	0.5	1.0	-
$\pm 0.5 \%$	$\pm 0.5 \%$	$\pm 0.5 \%$	$\pm 1.0 \%$	setting accuracy $\pm 5 \%$
$\pm 0.5 \%$	$\pm 0.5 \%$	$\pm 0.5 \%$	$\pm 1.0 \%$	-
$\begin{gathered} \pm 0.25 \% \\ \text { (both) } \end{gathered}$	$\begin{gathered} \pm 0.25 \% \\ \text { (both) } \end{gathered}$	$\begin{gathered} \pm 0.25 \% \\ \text { (both) } \end{gathered}$	$\pm{ }_{* 3}^{ \pm 1.0 \%}$	-
-	-	$\pm 0.25 \%$	-	-
120\% of rated input value				
Supply electricity for 10s duration 10 times at 10s intervals (temperature transducers excluded)				
Supply electricity for 10s duration 10 times at 10s intervals (temperature transducers excluded)				
2000VAC for 1 min				
2000VAC for 1 min				
2000 VAC/DC for 1 min (in combination with a ZCT for leakage current transducers)				
2000VAC for 1 min				
$10 \mathrm{M} \Omega$ or more (at relative humidity of 80% or less)				
$\pm 1500 \mathrm{~V}$, pulse width: $1 \mu \mathrm{~s}$				
$\pm 1500 \mathrm{~V}$, pulse width: 1μ s (leakage current transducers exempt)				
$490 \mathrm{~m} / \mathrm{s}^{2}$ (50G), in 3 directions, 6 times with mounting legs mounted				
16.7 Hz , double amplitude 4 mm , in 3 directions, 1h each (corresponding to approx. 2.2G) with mounting legs mounted				
$-10 \sim 50^{\circ} \mathrm{C}$ (daily mean temperature: $35^{\circ} \mathrm{C}$ or less)				
$-20 \sim 60^{\circ} \mathrm{C}$				
30~85\% relative humidity				

*2 For T-51LG, the \% with respect to basal value that is the maximum value of the mutual difference between output values when the frequency is changed from 40 to 2 kHz .
For T-51LGF, the \% with respect to basal value that is the maximum value of the mutual difference between output values when the frequency is changed from 45 to 60 Hz .

Overall Connection Diagrams

-Fixed-load output (K Series)

Fig. 1 3-phase, 3-wire circuit

- The active power, reactive power, frequency, phase angle, and power factor transducers are H Series transducers.
- For low-voltage circuits, grounding of the secondary sides of the instrument voltage transformer and current transformer is unnecessary.

Fig. 2 3-phase, 4-wire circuit

-The active power, reactive power, frequency, phase angle, and power factor transducers are H Series transducers.

- For low-voltage circuits, grounding of the secondary sides of the instrument voltage transformer and current transformer is unnecessary.

-Constant-current/Constant-voltage output (H Series, S Series)

Fig. 3 3-phase, 3-wire circuit

- For low-voltage circuits, grounding of the secondary sides of the instrument voltage transformer and current transformer is unnecessary.

If the auxiliary power supply is DC, connect the \oplus side to "MA" and the Θ side to "MB".

Fig. 4 3-phase, 4-wire circuit

If the auxiliary power supply is DC , connect the \oplus side to " MA " and the \bigodot side to " MB ".

Fixed-load output

An output system that can be used only with the load resistance value connected to the output being a single, predetermined value and with which an error occurs if the load resistance value differs from the specified value.

-Constant-voltage output/Constant-current output

An output system that can be used if the load resistance value connected to the output is within a predefined range, and is suited for cases where the load resistance value is unspecified and cases where future load increase is predicted.

_oad

The full load resistance value connected to the output terminals of a transducer.

Output span

The difference between the upper-limit value and lowerlimit value of an effective output range.

Example 1: For an output of 5 V , the span is 5 V .
Example 2: For an output of $4 \sim 20 \mathrm{~mA}$, the span is 16 mA .
Example 3: For an output of $-5 \sim 0 \sim 5 \mathrm{~V}$, the span refers respectively to the + side span of +5 V and the - side span of -5 V .

Auxiliary power supply (control power supply)
An AC power supply or DC power supply necessary for operation of the transducer and supplied from the exterior (i.e., not supplied from the measured circuit). If the voltage of the measured circuit is comparatively stable, it can be used for connection to the auxiliary power-supply terminals.

Example: Connection to auxiliary power supply from a measured circuit.

- Accuracy (grade)

A term expressing the accuracy of a transducer classified according to the tolerance and limits of influence (influence of temperature, influence of frequency and other allowable limits of performance).

Example: The tolerance of a grade 0.5 transducer is within $\pm 0.5 \%$.
The tolerance for an input of 1000 W and output of 5 V is: $5 \mathrm{~V} \times(\pm 0.5 \%)= \pm 25 \mathrm{mV}$.

-Output ripple (P-P)

An AC component contained in the output expressed by a ratio of the peak-to-peak value of the AC component and the span.

-Response time

The time it takes for the output to settle within a specified range of a final stationary value when the input changes suddenly from one fixed value to another.

Ordinarily refers to the time it takes for the output to settle within $\pm 1 \%$ of the rated output value centered at a final output value when a step input that gives rise to an output change of from 0% to approximately 90% of the effective output range or from 100% to approximately 10% of the effective output range is applied.

-Effective output range

A range within the output range in which predefined performance is guaranteed.

Saturation output
Although the output in the range $0 \sim 0.8 \mathrm{~mA}$ is proportional to the input in the diagram above, the proportion of change of output gradually decreases and saturates with respect to the proportion of change of input in the $0.8 \sim 1 \mathrm{~mA}$ region. Such an output is called "saturation output".

-3-phase balanced circuit

When loads $\bar{Z} a, ~ Z ̇ b ~ a n d ~ Z ̇ c ~ t h a t ~ a r e ~ c o n n e c t e d ~ t o ~ a ~ 3-~$ phase power supply are all equal, the respective voltages $\dot{V}_{\text {RS, }} \dot{V}_{\text {ST }}$ and $\dot{V}_{\text {TR }}$ are all equal in magnitude and phase difference among the respective voltages. The respective line currents \dot{I}_{R}, ìs and $\dot{\mathrm{I}}_{\mathrm{T}}$ are also all equal in magnitude and phase difference. Such a circuit is called a 3-phase balanced circuit.

3-phase unbalanced loads

When loads Ża, Żb and Żc that are connected to a 3phase power supply are not equal, the respective line currents I_{R}, ìs and I_{T} are also not equal in magnitude and phase difference among the respective currents. Such loads are called 3-phase unbalanced loads.
Among phase angle transducers, there are those that can be used with 3-phase unbalanced loads (for 3-phase unbalanced loads) and those that cannot be used with 3phase unbalanced loads (for 3-phase balanced circuit).

- Third harmonic

A voltage or a current with frequency that is 3 times that of the fundamental frequency voltage or current (fundamental wave: a 60 Hz AC voltage or current in the case of an input frequency of 60 Hz).
When a third harmonic or other harmonic is contained, the waveform becomes distorted and becomes a cause of measurement error.

Burnout

A term often used with temperature transducers and refers to a function by which, when an input line into the temperature transducer or a temperature sensor beyond the input line, becomes disconnected, the output is rises above the effective output range (normally, the output is increased ... positive burnout).

Cold junction compensator

A thermocouple sensor's electromotive force is input to a thermocouple temperature transducer. The voltage corresponds to a temperature less than $\mathrm{T}^{\circ} \mathrm{C}$, the temperature measured at the point only affected by the ambient temperature, $\mathrm{Ta}^{\circ} \mathrm{C}$, thereby compensating for the $\mathrm{Ta}^{\circ} \mathrm{C}$ part. This action is performed by a cold junction compensator, which is either attached externally to the transducer or built-in.

Zero adjuster

With a zero adjuster, the output range is increased or decreased by a fixed value (approximately $\pm 0.3 \sim \pm 5 \%$ with respect to the span) as shown in the figure below.

-Span adjuster

With a span adjuster, the output increases or decreases at the same proportion ($\pm 3 \% \sim \pm 15 \%$ with respect to the rated output) with zero input as the base point.

Mitsubishi Electric Indicators and Transducers

Eco Changes is the Mitsubishi Electric Group's environmental statement, and expresses the Group's stance on environmental management. Through a wide range

[^0]: Note 1. For low-voltage circuits, grounding of the secondary sides of the instrument voltage transformer and current transformer is unnecessary.

[^1]: Note 1. For low-voltage circuits, grounding of the secondary sides of the instrument voltage transformer and current transformer is unnecessary.

[^2]: MC : auxiliary contact of electromagnetic switch for starting motor
 T: timer
 L1, L2 : control device

[^3]: - Specify three values for the output.

[^4]: The voltage tolerance of a 24 VDC auxiliary power supply is $\pm 10 \%$.
 The voltage tolerance of a 100~120VDC auxiliary power supply is ${ }_{-25}^{+15} \%$.

[^5]: - Specify three values for bidirectional output.

[^6]: - Specify three values for bidirectional output.

[^7]: \square Specify three values for bidirectional output.

