

MITSUBISHI ELECTRIC INDICATORS and TRANSDUCERS

Table of Contents (Mechanical Indicators)

Overview and Features
Safety Precautions5
Selection Precautions
Special Specifications10
Selection11
Products List
Rectangular Indicators
Indicators with Changeover Switch
Mechanical Demand Meters and Demand Meter Relays18
• Meter Relays
Indicators with Maximum and Minimum Needles, Special Application Meters
Bar-shaped Indicators
Glossary of Terms23
Standards
Reference Chart for Test Voltages and
JIS Mark25
Mechanical Indicators
Common Specifications27
Common standard specifications27
Covers
Scale plate components and items indicated
Standard Scale Diagrams
Outer Dimension Drawings
Overall Connection Examples
Mechanical Indicator Specifications
•DC Ammeters43
YM-206NDA, YM-208NDA, YM-210NDA, YM-8NDA,
YM-10NDA, YM-12NDA, LM-80NDA, LM-110NDA DC Voltmeters
YM-206NDV, YM-208NDV, YM-210NDV, YM-8NDV,
YM-10NDV, YM-12NDV, LM-80NDV, LM-110NDV
•AC Ammeters49
YS-206NAA, YS-208NAA, YS-210NAA, YS-8NAA,
YS-10NAA, YS-12NAA, LS-80NAA, LS-110NAA, YR-206NAA, YR-208NAA, YR-210NAA, YR-8NAA,
YR-10NAA, YR-12NAA, LR-80NAA, LR-110NAA
AC Voltmeters51
YS-206NAV, YS-208NAV, YS-210NAV, YS-8NAV,
YS-10NAV, YS-12NAV, LS-80NAV, LS-110NAV, YR-206NAV, YR-208NAV, YR-210NAV, YR-8NAV,
YR-10NAV, YR-12NAV, LR-80NAV, LR-110NAV
•Wattmeters53
YP-206NW, YP-208NW, YP-210NW, YP-8NW,
YP-10NW, YP-12NW, LP-80NW, LP-110NW • Varmeters
YP-206NVAR, YP-208NVAR, YP-210NVAR, YP-8NVAR,
YP-10NVAR, YP-12NVAR, LP-80NVAR, LP-110NVAR
• Power Factor Meters (for balanced circuits)61
YP-206NPF, YP-208NPF, YP-210NPF, YP-8NPF, YP-10NPF, YP-12NPF, LP-80NPF, LP-110NPF
Power Factor Meters (for unbalanced loads)
YP-206NPFU, YP-208NPFU, YP-210NPFU, YP-8NPFU,
YP-10NPFU, YP-12NPFU, LP-80NPFU, LP-110NPFU
 Frequency Meters
YP-10NF, YP-12NF, LP-80NF, LP-110NF
Receiving Indicators67
YM-206NRI, YM-208NRI, YM-210NRI, YM-8NRI,
YM-10NRI, YM-12NRI, LM-80NRI, LM-110NRI, YR-206NRI, YR-208NRI, YR-210NRI, YR-8NRI,
YR-206NRI, YR-208NRI, YR-210NRI, YR-8NRI, YR-10NRI, YR-12NRI, LR-80NRI, LR-110NRI
Indicators with Changeover Switch69
AC ammeters69
YR-8UNAA, YR-10UNAA, YR-12UNAA

1

AC voltmeters		70
YR-8UNAV, YR-10U	NAV, YR-12UNAV	
Mechanical Demai	nd Meters	71
AC ammeters		72
LB-8ZNAA, LB-11ZN	IAA, LB-11ZRNAA	
AC voltmeters		72
LB-8ZNAV, LB-11ZN	IAV, LB-11YRNAV	
Wattmeters		73
LB-11ZNW, LB-11YI	NW, LB-11ZRNW, LB-11YRNW	
Receiving indicators		73
LB-11ZNRI, LB-11YI	NRI, LB-11ZRNRI, LB-11YRNRI	
Mechanical Deman	nd Meter Relays	75
AC ammeters LB-112	ZRMNAA	
 Meter Relays 		77
DC ammeters	YM-210MRNDA, YM-210MRHNDA	79
	LM-11MRNDA, LM-11MRHNDA	
DC voltmeters	YM-210MRNDV, YM-210MRHNDV	80
	LM-11MRNDV, LM-11MRHNDV	
AC ammeters	YR-210MRNAA, YR-210MRHNAA	81
	LR-11MRNAA, LR-11MRHNAA	
AC voltmeters	YR-210MRNAV, YR-210MRHNAV	82
	LR-11MRNAV, LR-11MRHNAV	
Wattmeters	YM-210MRNW, YM-210MRHNW	83
	LM-11MRNW, LM-11MRHNW	
Varmeters	YM-210MRNVAR, YM-210MRHNVAR .	83
	LM-11MRNVAR, LM-11MRHNVAR	
Power factor meters	YM-210MRNPF, YM-210MRHNPF	85
	LM-11MRNPF, LM-11MRHNPF	
	YM-210MRNPFU, YM-210MRHNPFU	
	LM-11MRNPFU, LM-11MRHNPFU	
Frequency meters	YM-210MRNF, YM-210MRHNF	86
	LM-11MRNF, LM-11MRHNF	
Receiving indicators	YM-210MRNRI, YM-210MRHNRI	87
	LM-11MRNRI, LM-11MRHNRI	
Indicators with Max	ximum and Minimum Needles	89
DC ammeters	LM-11ZNDA, LM-11YNDA	
AC ammeters	LM-11ZNAA, LM-11YNAA	
DC voltmeters	LM-11ZNAV, LM-11YNAV	
Receiving indicators	LM-11ZNRI, LM-11YNRI	
Earth-leakage Dete	ectors	91
LM-11NGD		
 Synchroscopes 		93
LI-11NSY		
Dual-element Indic	ators	95
LM-11NE		
 Bar-shaped Indication 	tors	96
DC indicators		97
FM-210SN, FM-213	SN, FM-215SN, FM-217SN	
FM-210DN, FM-213	DN, FM-215DN, FM-217DN	
AC indicators		98
FR-210SN, FR-213S	N, FR-215SN, FR-217SN	

Table of Contents (Transducers)

Overview and Features105
Safety Precautions107
 Safety Precautions
Requests Regarding Selection
Power, Instrumentation and Peripheral Transducers
(Single Function)
Products List
Specifications According to Product Type
Active Power Transducers
Current Transducers
T-51KAA, T-51HAA, T-101SAA
 Current Transducers (Saturated Power)114
T-51KSS, T-51HSS
Voltage Transducers
T-51KAV, T-51HAV, T-101SAV • Active Power Transducers117
T-101HW, T-101SW
Reactive Power Transducers119
T-101HVAR, T-101SVAR
Phase Angle Transducers121
T-101HPA, T-101HPA(U), T-101SPA(U) Power Factor Transducers (for Unbalanced Loads)123
T-101HPF(U), T-101SPF(U)
• Frequency Transducers
T-51HF, T-101SF
 Voltage Phase Angle Transducers126
T-101SY
Instrumentation Transducers OC Level Transducers
T-51DL
ODC Reverse Transducers128
T-51DR
Isolators129
Isolators
Isolators129 T-101IS High-speed Isolators130
lsolators
 Isolators
•Isolators 129 T-101IS 130 •High-speed Isolators 130 T-101ISQ 131
•Isolators 129 T-101IS 130 •High-speed Isolators 130 T-101ISQ 131 •Limiters 131 T-51LM 132 T-101AD 132
 Isolators
 Isolators
 Isolators
•Isolators 129 T-101IS 130 •High-speed Isolators 130 T-101ISQ 131 •Limiters 131 T-51LM 132 •Adders 132 T-101AD 132 •Resistance-bulb Temperature Transducers 133 T-51TP, T-101TPZ 133
 Isolators
•Isolators 129 T-101IS 130 •High-speed Isolators 130 T-101ISQ 131 •Limiters 131 T-51LM 132 •Adders 132 T-101AD 133 •Resistance-bulb Temperature Transducers (Insulated/Non-insulated) 133 T-51TP, T-101TPZ 135 •T-101TC, T-101TCZ 135 •First-order Lag Transducers 137 (Insulated/Non-insulated) 135 T-101TC, T-101TCZ 137 •First-order Lag Transducers 137 T-51DS Peripheral Transducers •AC Current Demand Transducers (Moderate Time Interval) 139 T-101HAA(DS) •AC Voltage Demand Transducers (Moderate Time Interval) 140 T-101HAV(DS) •Current Transducers with Power Flow Detection 141 T-101HAA(D) •Leakage Current Transducers (with Built-in Low-pass Filter) 143 T-51LG •Leakage Current Transducers (with Built-in Low-pass Filter) 145 T-51LGF •Voltage (Rise/Drop) Detectors 147 T-101VDL, T-101VDH •Filters 148
 Isolators

Outer Dimensions156	5
Multi-transducers [Insulated]	-
Multi-transducers [Insulated]157	Precautions
T-120M	India
Special Application Transducers	20 G
Harmonics Transducers165	Specifications
T-120HA	ification if the second se
Active Power/Active Energy Transducers171	ions
T-51WWH	
Usage/Care/Storage/Request for	
Maintenance and Inspection173	3 2
Performance175	5 Cha
Overall Connection Diagrams179	
Glossary of Terms	_

Mechanical Indicators

High Reliability and Abundant Product Line-up

Series		Rectangular indicators				Wide-angle indicators		
		Y-2N Series			Y-N Series		L-N	Series
Туре	Y-206N	Y-208N	Y-210N	Y-8N	Y-10N	Y-12N	L-80N	L-110N
Size (mm)	64×60	85×75	100×85	82×82	102×102	122×122	80×80	110×110
DC ammeters	A	A	A	A	Α	A	A	A
DC voltmeters	V	V	V	V	V	V	V	V
AC ammeters	A	A	A	A	A	A	A	A
AC voltmeters	V	V	V	V	V	V	V	V
Wattmeters	kW	kW	kW	kW	kW	kW	kW	kW
Varmeters	kvar	kvar	kvar	kvar	kvar	kvar	kvar	kvar
Power factor meters					$\boxed{\cos\phi}$		cosø	$\cos\phi$
Frequency meters	Hz	Hz	Hz	Hz	Hz	Hz	Hz	Hz
Receiving indicators	%	%	%	%	%	%	%	%

Depth dimension: 100mm or less

Equipped with isolation barrier and terminal cover

The isolation barrier and terminal cover reinforce isolation between terminals and protect conducting parts, thus preventing accidents and realizing improved safety.

Electric Indicators

Symbol details

· Depth dimension: 100mm or less · Equipped with isolation barrier and terminal cover · Easy mounting and wiring

· Equipped with isolation barrier and terminal cover

(Mechanical Indicators)

Indicators with changeover switch				
YR-UN Series				
YR-8UN YR-10UN YR-12UN				
82×99	102×119	122×139		

Demand meters/Demand meter relays				
LB-N Series				
LB-8N	LB-11N			
80×80	110×110			

Meter relays				
Y-210MRN	L-11MRN			
100×83	110×110			

Mounting screws

Two-screw mounting

With tip guide

Nut with disc spring

А

Easy mounting and wiring

kW

%

d

Terminal screw

Self-lifting screw

with washer

kvar

 $\cos\phi$

Hz

%

kvar

 $\cos\phi$

Hz

%

Various indicators for diverse applications

· With maximum and minimum pointers

Earth leakage

Easy-to-read scales

Scales are bright and easy-to-read, allowing them to perform their essential functions.

Safety Precautions

Please follow the following precautions when using Mitsubishi Electric products and be sure to carefully read the explanations regarding safety precautions in the boxes marked "Caution." In addition, ensure that any stickers or other items with relevant safety information are delivered to the final user.

1. Precautions concerning usage environment and usage conditions

- (1) Do not use in the following locations. Use in such locations may lead to malfunction or reduced service life.
 - · Locations where the ambient temperature is outside the range of -5 to +50°C.
 - \cdot Locations where the average daily temperature exceeds 35°C.
 - · Locations where condensation or relative humidity is less than 30% or more than 70% (85% for electronic indicators).
 - ☆ Moisture-proof treatment is available for high-humidity environments for some electrical indicator models. See page 10 of this catalog or contact a Mitsubishi Electric representative for details.
 - \cdot Locations with excessive dust, corrosive gas, salinity, or oil fumes.
 - * Corrosive gases include sulfur dioxide, ammonia, hydrogen sulfide and other gases that corrode metal, plastic and other materials.
 - ☆ Supplementary anti-corrosion treatment is available for special environments for some electrical indicators. See page 10 of this catalog or contact a Mitsubishi Electric representative for details.
 - · Locations where indicators are subject to excessive vibration or shock.
 - ☆ When used in a location subject to excessive vibration, moving parts may resonate and this may cause error and fluctuation of indicated values. In such cases, apply anti-vibration measures to the installed panel or change the installation location.
 - \cdot Locations directly exposed to rain, water drops, ultraviolet rays, or sunlight.
 - · Locations at an altitude of 2000m or more for electric indicators or 1000m or more for electronic indicators.
 - \cdot Locations with excessive external noise or radio waves.
 - \cdot Locations where a large amount of static electricity is generated.
 - · Locations where there is a high level of waveform distortion or high-frequency waves caused by harmonic/thyristor circuits or other means.
- (2) Please consult a Mitsubishi Electric representative regarding the use of indicators for any of the following facilities.
 - \cdot Nuclear power plants, medical devices, military facilities, airplanes or vehicles.
- (3) The products in this catalog are not certified indicators.
- They do not comply with the mandatory specifications for electrical meters as specified in the Measurement Act of Japan.

2. Mounting precautions

Please pay attention to the following items during installation.

For safety reasons, installation should only be performed by a professional electrical wiring technician.

- \cdot Mount the electrical indicators on metal panels.
- Mount on the panel in such a way that ensures the electrical indicator terminals and charged parts cannot be touched accidently by an operator.
- Install the special accessories for T-100 and T-150 inside the panel. In addition, install them so that it is ensured the accessories cannot be touched accidently by an operator.
- · The screws for mounting onto the panel must be tightened by appropriate tools at torques appropriate for the screw size.
 - * Recommended tightening torques M3 screws: 0.48~0.98N·m
 - M4 screws: 0.98~1.47N·m M5 screws: 1.47~1.96N·m

3. Connection precautions

Please pay attention to the following items when making connections.

- For safety reasons, installation should only be performed by a professional electrical wiring technician.
 - \cdot The metal panel must be grounded.
 - · Before using a voltmeter when connecting to a main power-supply circuit, make sure that an appropriate exterior fuse is installed.
 - Indicators that require an auxiliary power supply must not be directly connected to/use a main power supply. For these indicators, use a power supply that is isolated from the main power supply circuit via a voltage transformer or other means.

- Varmeters and power factor meters will not operate correctly with a reverse phase sequence. Use with the correct phase sequence.
- Grounding of the secondary side of an instrument voltage transformer or current transformer is not necessary for low-voltage circuits.

	· Connections must be made correctly as shown in the connection diagrams of the catalog. Inappropriate			
	connection and installation may cause equipment burnout, fire or leakage of electricity.			
	· For connection, use crimp terminals suited for the electrical quantity and terminal size.			
	• Make sure to use the terminal screws supplied with the product.			
	• The terminal screws must be tightened by appropriate tools at torques appropriate for the screw size.			
	Failure to do so may cause overheating, equipment burnout or fire.			
	* Recommended tightening torques M4 screws: 0.98~1.47N·m			
•	M5 screws: 1.47~1.96N·m			
	Do not perform connection work with live wires.			
CAUTION	Dangers include electrical shock, electrical burns, equipment burnout and fire.			
	· For safety, make sure to attach the terminal cover.			
	· Indicators combined with a current transformer (CT) must be correctly connected to the CT secondary-side			
	signal. Incorrect connection or opening of the secondary side of the CT will generate high voltage on the			
	secondary side of the CT, which may lead to CT failure, scorching or a fire.			
	Indicators combined with a voltage transformer (VT) must be correctly connected to the secondary side of			
	the VT. Incorrect connection or short-circuiting of the secondary side of the VT will cause a large overcurrent			
	to flow through the secondary winding of the VT, leading to scorching of the secondary winding and VT			
	failure, scorching or a fire.			

4. Precautions concerning preparation before use

Please read the following carefully before use.

(1) Transportation

Be sure to prevent the indicators from vibration or shock as much as possible during transportation.

In situations where it is possible that indicators will be subject to excessive vibration or shock, remove the indicator from the panel before transportation.

When the indicators are received, check the indicators for any abnormalities in appearance or operation that may have been caused as a result of excessive vibration or shock during transportation.

(2) Check the product name and rating

As a precautionary measure, check the product name and rating (e.g., voltage, current, frequency, phase-wire) before use.

(3) Adjustment

If an indication corresponding to an input is to be adjusted in an indicator with a built-in adjustment resistor such as a DC ammeter or receiving indicator, perform adjustment without applying excessive force to the adjuster. Otherwise, the adjuster may break.

Additionally, avoid using the adjuster under normal circumstances.

(4) Insulation resistance test and voltage test

Please read the following carefully before performing an insulation resistance test or voltage test. Not doing so may cause indicator failure.

	 When performing an insulation resistance or voltage test between 1) an electrical circuit and an outer casing, or 2) a voltage circuit and a current circuit, short-circuit the input terminals in both the current and voltage circuits. Not doing so may cause the indicator to malfunction. The applied voltage for the voltage test varies according to the indicator model. Please note the voltages indicated in this catalog. For the applied voltage of the impulse withstand test, apply a 1.2×50µs standard lightning impulse voltage waveform with a full wave voltage of 5kV six times or less. Be careful of where voltage is applied; applying voltage across terminals of equal potential, such as across VT input terminals, may cause failure.
--	--

5. Usage precautions

Please conform to the following during use.

	 (1) Use within the rated range. Use outside of the rated range may cause malfunction or failure. Applying an electric current exceeding the rated value may cause a failure. Note that this excludes certain models (AC ammeters with expanded scales), for which a temporary current (less than one minute at three times the rated value) may be applied. With the LM-11MRN, LM-11MRHN, LR-11MRN, and LR-11MRHN meter relays, when interruption of the auxiliary power supply occurs, the contact output state immediately before interruption is memorized. Thus, depending on the state during recovery from interruption, the contact output may be abnormal. After recovery from interruption, to return the indicator to normal operation, perform the resetting operation after moving the setting needle past the driving needle using the setting knob (see p.90 of this catalog for details). With the LM-11ZN and LM-11YN indicators with maximum and minimum needles, LB-8ZN, LB-11ZN, LB-11YN, LB-11ZRN, and LB-11YRN demand meters, and LB-11ZRMN demand meter relay, set the current application time of the electromagnetic remaining needle resetting terminal to "within 5 seconds." Burnout will occur if current application is continued for 5 seconds or longer. (2) If, when using a movable iron-core indicator by connecting it to the output side of an inverter, the carrier frequency of the inverter is set higher than 5kHz, the indicator may generate heat and failure may occur. Use a carrier frequency of 5kHz or less. (3) The upper-limit alarm and lower-limit alarm settings of the meter relay and demand meter relay must be set correctly. If the settings are incorrect, an alarm will not be generated when an alarm is needed. (4) A shunt (SHT) generates heat and must not be touched by bare hands as it will cause a burn. Additionally, select a well-ventilated location for installation and mount the unit giving consideration to heat radiation. (Refer to p.47 of the catalog.)
--	--

(5) Do not remove or modify the cover of an indicator, otherwise failure, electrical shock or fire may occur.

6. Precautions concerning repair/response in case of failure/abnormality

If an abnormal noise or heat is generated or a failure occurs, take immediate measures such as shutting off the input, and contact the nearest Mitsubishi Electric System & Service Co. Ltd. branch or relevant Mitsubishi Electric branch.

7. Maintenance and inspection

Perform the following inspections to ensure correct use of indicators.

- 1 Daily inspection
 - Check for the following:
 - · Damage to the indicator
 - · Abnormal functioning
 - · Abnormal noise or odor
 - · Presence of debris, dust or water
- 2 Periodic inspection
 - In addition to the above items, check for the following:
 - \cdot Loose mounting or loose terminal wire connections
 - \cdot Overheating or deformation due to stress to terminals, outer casings or other components.

Always perform terminal wire connection inspections when power to the devices has been interrupted.
Do not touch charged parts of the terminals while current is being applied. There is danger of electrical shock, electrical burns, and damage to equipment.

- (1) The cover has an antistatic treatment; please follow these precautions when cleaning it.
 - · Wipe the cover surface with a soft cloth to remove any dust/dirt. If the dust/dirt cannot be removed, the cover should be replaced.
 - To prevent cover deformation or discoloration, or peeling of the cover coating, do not use benzene, thinner or similar cleaning agents on the cover and avoid placing any type of chemically-treated cloth on the cover for a long period of time.
 - Static electricity can cause unstable needle movement. If this happens, it may be necessary to coat the cover with a commercially available antistatic agent.

8. Storage precautions

- (1) Do not store indicators for long periods in the following locations. Long-term storage in such locations may lead to malfunction or reduced service life.
 - · Locations where the ambient temperature is outside the range of -20 to +60°C.
 - · Locations where the average daily temperature exceeds 35°C.
 - · Locations where the humidity is 90%RH or more and dew condensation occurs.
 - · Locations with excessive dust, corrosive gas, salinity, or oil fumes.
 - * Corrosive gases include sulfur dioxide, ammonia, hydrogen sulfide and other gases that corrode metal, plastic and other materials.
 - · Locations with excessive vibration or shock.
 - · Locations directly exposed to rain, water drops, ultraviolet rays, or sunlight.
- (2) When storing the indicators, turn off the power, remove the wiring and place in a vinyl bag, box or other container.

9. Disposal precautions

- (1) Please note that the electric/electronic indicators do not use batteries.
- (2) Dispose of the indicators following the procedures for disposal of general industrial waste.

Warranty

- (1) The warranty period shall be one year from the date of purchase or 18 months from the date of manufacture, whichever is earlier. In addition, the repair of any failure due to a customer's intentional or negligent actions shall incur a service charge, irrespective of whether or not the warranty is still valid.
- (2) Mitsubishi Electric shall not be liable for:
 - Damage that cannot be attributed to Mitsubishi Electric; Lost opportunity or earnings resulting from failure of a Mitsubishi Electric product; Damage, secondary damage or compensation for an accident resulting from special circumstances regardless of whether or not the circumstances were foreseeable; Damage to products/Other services for products not manufactured by Mitsubishi Electric.

Service life

The expected service life of electric indicators is 10 years.

* The expected service life is the period or number of operations for which the indicator can be used without functions deteriorating to a level that impairs practical use, based on the condition that the equipment or material is used according to standard specification conditions. Please note that the expected service life is only a guide and performance is not guaranteed for this period.

(Excerpt/Summary of "Expected Service Life of Electrical Equipment," in the September, 1998 issue of the Journal of the Institute of Electrical Installation Engineers of Japan.)

1 Selection of indicator ratings

Application of an input exceeding a rating may cause failure or reduced service life.

In cases where a rating value may be exceeded temporarily due to a starting current of a motor or other reason, select an expanded scale indicator.

Meter relays respond instantaneously and thus output a signal immediately when the starting current or other current exceeds a set value.

When it is necessary to temporarily prevent detection, add an external circuit.

2 Distortion of input waveform

Error occurs readily when the input waveform is distorted.

AC ammeter/voltmeter error is comparatively low if the indicator operates using movable iron core or approximate effective value rectifications. However, please note that the internal parts of movable iron core indicators generate heat when a harmonic current is input, which may lead to deformation or scorching of the casing. For this reason, use a carrier frequency of 5kHz or less for inverter circuits.

3 Use a power factor meter for unbalanced loads if the 3-phase load is unbalanced

Power factor meter errors may occur if the load of a balanced circuit becomes unbalanced. Select a power factor meter for unbalanced loads if it is possible that the 3-phase load will be unbalanced.

4 Error may occur due to extremely low input current

Power factor meter errors may occur if the input current is significantly lower than the rated current. When selecting the rated primary current of a CT, ensure that the secondary current during actual use will be 1/5 or more of the rated secondary current of the CT.

5 Malfunction may occur due to decrease of input voltage

Wattmeters or varmeters may malfunction if the input voltage decreases. Ensure that the input voltage does not decrease to 85% or less of the indicator's rated voltage.

6 Use a special specification product in an environment with high temperature, high humidity, or corrosive gas

Insulation degradation or failure may occur when the product is used under an environment with high temperature, high humidity, or corrosive gas (e.g., in a wastewater treatment plant, sewage treatment plant, chemical plant, rubber manufacturing plant).

Please select a model with special specifications such as anti-corrosion or moisture-proof treatment.

7 Special specification products

Please specify the necessary specifications or contact a Mitsubishi Electric representative if you require a specialspecification model (see p.10). The information in the following table relates to special specifications for mechanical indicators. Please contact a Mitsubishi Electric representative for information regarding special specifications for electronic indicators.

Application	Specification			
Mounting attitude	The standard attitude for mounting indicators is vertical.			
	Please specify the mounting angle if a non-standard mounting attitude is required.			
	Standard			
	\ \	u	1500	
	(Horizonta	ll)		
	⊥ (Vertical) Example of mo	-ti	Example of mounting	
	ANGL (Horizo		angle designation	
		ANGE (50)	ANGL (150°)	
High humidity	Moisture-proof treatment			
	•Use of indicators in high-humidity environment	ts may cause mold to grow or th	e insulation resistance to deteriorate.	
	To prevent this, a special moisture-proof coating	ng and anti-corrosion plating are	used.	
	 Applicable models: Y-2N Series, Y-N Series, L- 			
Avon frank Mill	•A "moisture-proof" sticker is attached to produ		Electric neuros estativos ferraletaile	
	This treatment cannot be applied to some model	dels. Please contact a Mitsubish	Electric representative for details.	
$\langle \langle \langle \rangle \rangle \rangle $			Moisture-proof	
			treatment	
Corrosive gases	Supplementary anti-corrosion treatment			
	This treatment is a simplified anti-corrosion treatment			
	environments where there is a high level of co	-	-	
	chemical plants, indicators are generally protected with anti-corrosion casings.) The treatment involves use of a sealed structure and anti-corrosion plating.			
	 Applicable models: Y-2N Series, Y-N Series, ar 			
	●A supplementary anti-corrosion sticker is attac		treated.	
118 ENTERING	This treatment cannot be applied to some model.	dels. Please contact a Mitsubish	Electric representative for details.	
< > > Lotto				
H_2S \mathcal{A} \mathcal{A} \mathcal{A}			Supplementary	
			anti-corrosion treatment	
			ueament	
High-frequency circuits	●Use the following models for high-frequency c	ircuits with which the commercia	I frequency of 50 to 60Hz is	
	exceeded.			
	Indicator	Applicable models	Applicable range (max.)	
and (Mai)	AC ammeter, AC voltmeter	Rectifying	Approx. 1000Hz	
	Wattmeter, varmeter, power factor meter	Transducer	400Hz	
A Roo II	Frequency meter	Transducer	400Hz (scale: 360~440Hz)	
	Please specify the frequency when ordering.			
J (5, 0) ×				
))				
Products complying with foreign standards	Products that comply with foreign standards so When ordering, please specify the relevant standards		ะ เกลานเลงเนเซน.	
Stanuarus	 When ordering, please specify the relevant standards and frequency. Models with JIS indications comply with IEC standards (no changes necessary). 			
	Please note that the products in this catalog d	· •	,,-	
Special characters and symbols			nanese or English characters:	
epoolal onarabioro ana oymbolo	 Please clearly specify the language and font settings required (for example, Japanese or English characters; uppercase or lowercase characters). 			
	Orders without language/font settings specified will be manufactured according to Mitsubishi Electric's standard			
	specifications (lowercase English characters,		-	
Special scale models	 Special scale models can be manufactured (p) 			
	 In cases where the indicator input and the sca 			
	conversion table.		,	

Selection

Please refer to the following when selecting an electric indicator.

Item		Selec	tion procedure		Page
	Measure	ment element	Indicator type	Series	9-
			Rectangular indicators	Y-2N Series, Y-N Series	43~48
Mechanical indicators DC electrical quantity measurement DC ammeters, DC voltmeters Rectangular indicators With maximum/minimum needles Bar-shaped indicators Rectangular indicators Bar-shaped indicators With maximum/minimum needles Bar-shaped indicators Vith changeover switch Demand meters Demand meter relays Meter relays With maximum/minimum needles Bar-shaped indicators Meter relays With maximum/minimum needles Bar-shaped indicators Bar-shaped indicators Rectangular indicators Bar-shaped indicators Meter relays With maximum/minimum needles Bar-shaped indicators Bar-shaped indicators Rectangular indicators Bar-shaped indicators Varmeters Wattmeters Demand meters Meter relays With -angle indicators Wide-angle indicators Varmeters Meter relays Rectangular indicators Power factor meters Rectangular indicators Meter relays Frequency meters Rectangular indicators Wide-angle indicators Wide-angle indicators Ber-shaped indicators Meter relays Telem	Wide-angle indicators	L-N Series	10 10		
			Materialaya	YM-210MRN Series	
	Meter relays	LM-11MRN Series	79~80		
	em Measurement element DC electrical quantity measurement DC ammeters, DC AC electrical quantity measurement AC ammeters, AC AC electrical quantity measurement AC electrical quantity Telemetry measurement Receiving indication Receiving indication		With maximum/minimum	LM-11ZN Series	00.00
Measurement element DC electrical quantity measurement DC ammeters, DC voltme AC ammeters, AC voltme AC ammeters, AC voltme AC electrical quantity measurement Wattmeters Mechanical Wattmeters			LM-11YN Series	89~90	
			Bar-shaped indicators	F-N Series	97
			Rectangular indicators	Y-2N Series, Y-N Series	40.50
			Wide-angle indicators	L-N Series	49~52
			-	YR-UN Series	69~70
			-		72
				LB-N Series	75
		AC ammeters, AC voltmeters		YR-210MRN Series	
			Meter relays	LR-11MRN Series	81~82
				LM-11ZN Series	
				LM-112N Series	89~90
					98
				F-N Series	90
			ŭ	Y-2N Series, Y-N Series	53~56
		Al quantity Wattmeters Demand meters LB-N Series YM-210MRN Series			
	AC electrical quantity measurement Meter relays	73~74			
	measurement		Meter relays		83~84
	-		-	LM-11MRN Series	
echanical		Final State Stat		Y-2N Series, Y-N Series	57~60
	Varmeters		Wide-angle indicators	L-N Series	
			Meter relays	YM-210MRN Series	83~84
				LM-11MRN Series	
			Rectangular indicators	Y-2N Series, Y-N Series	
		Power factor meters	Wide-angle indicators	L-N Series	01~00
		Tower lactor meters	Materialaya	YM-210MRN Series	05
			Interer relays	LM-11MRN Series	85
			Rectangular indicators	Y-2N Series, Y-N Series	
		Frequency motors	Wide-angle indicators	L-N Series	66
				YM-210MRN Series	
			Meter relays	LM-11MRN Series	86
			Rectangular indicators	Y-2N Series, Y-N Series	
			Wide-angle indicators	L-N Series	67~68
			Demand meters	LB-N Series	73~74
				YM-210MRN Series	
		Receiving indicators	Meter relays	LM-11MRN Series	87
	Heceiving Indication		With maximum/minimum	LM-11ZN Series	
				LM-11YN Series	89~90
			Dual-element indicators	LM-11NE	95
				F-N Series	97
			· ·	LM-11ZN Series	
	Ground voltage measurement	Ground voltmeters	needles	LM-112N Series	89~90, 9
	allound voltage modeuroment	nt ne	(Special application indicators)	LM-11NGD	91~92
	Synchroscopy	Synchroscope	(Special application indicators)	LII-11NSY	91~92

Item				Selection procedure	Page						
nom		Indicator type		Selection item	, ugo						
			Y-2N Series	64×60 (Y□-206N□□) , 85×75 (Y□-208N□□)	35						
	Poetangula	r indicators		100×85 (Y□-210N□□) Note 1							
	Rectangula		Y-N Series	82×82 (Y□-8N□□) , 102×102 (Yh-10N□□)	36						
				122×122 (Y□-12N□□) Note 1							
	Wide-angle	e indicators	L-N Series	80×80 (L□-80N□□) , 110×110 (L□-110N□□) Note 1	37						
Front face				82×109 (YR-8UN□□) , 102×119 (YR-10UN□□)							
outer dimensions		nangeover switch	YR-UN Series	122×139 (YR-12UN□) Note 1	69~70						
umensions	Demano	d meters neter relays	LB-N Series	80×80 (LB-8ZN□□) , 110×110 (LB-11□N□□) Note 1	72~75						
			Y-210MRN Series	100×83 (Y□-210MR□N□□) Note 1							
	Meter	relays	L-11MRN Series	110×110 (L□-11MR□N□□) Note 1	78						
				100×30 (F□-210*N) , 130×36 (F□-213*N) Note 1							
	Bar-shaped	d indicators	F-N Series	150×40 (F□-215*N) , 170×40 (F□-217*N) Note 2	99~100						
	DC ammeters, D	C voltmeters		A selection should be made so that the maximum scale value is approximately 1.2 to	1.5 times the						
	AC ammeters, A			rated value or the steady-state value of the circuit to be measured.							
	Wattmeters, var	meters	In common	For the maximum scale, any of the following values are recommended (or any of the	se values						
	Receiving indica	itors		multiplied by 10 resulting in a whole number). 1, 1.2, 1.5, 2, 2.5, 3, 4, 5, 6, 7.5, 8 (4.5 and 9 are also recommended in the case of v	oltmeters)						
					olimeters)						
	DC	C ammeters		Select a value that is 1.5 times or more than the load current. When combining with a shunt, in general, make a selection that matches the rated va	ue of the shun						
		C voltmeters		Select a value 1.2 to 1.5 times the circuit voltage.							
		o volumeters		The selection should have a maximum scale value approx. 1.5 times the load curren							
	AC	C ammeters		When combining with a current transformer (CT), make a selection that matches the rated							
Scale	AC	C voltmeters		Select a value 1.2 to 1.5 times the circuit voltage. When combining with a voltage transformer (VT), select a value approx. 1.36 times the rate							
				Select according to the calculation result of: VT ratio × CT ratio × indicator rating (Po							
	Wa	attmeters, varme	ters	Refer to the "Scale Selection Reference Table" (wattmeter: p.56; varmeter: p.60).							
	Be	eceiving indicator	S	Select so as to match the rated value of the device that the indicator is combined with (e.g., tra	insducer sensor						
		Joonning Indicatory	<u> </u>								
		Power factor met	ers	The standard scale is LEAD 0.5–1–LAG 0.5. A LEAD 0–1–LAG 0 scale can also be manufactured (values between 0 and 0.5 are for reference							
		Frequency mete	ers	Select according to the frequency of the circuit to be measured. In general, for 50Hz, select a 45–55Hz scale; for 60Hz, select a 55–65Hz scale and for 5							
				common use, select a 45–65Hz scale.							
		Ground voltmete		Select so that the maximum scale value is the measured circuit's voltage or 1.35 time							
		ammeters, DC vo		The indicator rating is the input value corresponding to the maximum scale value.	43~48, 79~80, 9						
	AC a	ammeters, AC vo	Itmeters		49~52, 81~82, 98						
		Wattmeters		The secondary side rated voltage of a VT is selected as the rated voltage and the secondary side rated current of a CT is selected as the rated current.	53~56, 83~84						
Indicator		Varmeters		Additionally, the rated power (or rated reactive power) Po is selected to be within a range of 0.8 to 1.2 times the secondary side rated power of the transformer (VT, CT).	57~60, 83~84						
ratings		Power factor met	ers	Generally, the secondary side rated voltage of a VT is selected as the rated voltage and the secondary side rated current of a CT is selected as the rated current.	61~65, 85						
		Frequency meter	ers	Generally, the secondary side rated voltage of a VT is selected as the indicator rating.	66, 86						
		Receiving indicat	ors		67~68, 87, 97						
	Indicate	ors with changeo	ver switch	The indicator rating is the input value corresponding to the maximum scale value.	69~70						
	Ea	arth-leakage dete	ctors		91~92						
		Synchroscope	S	Generally, the secondary side rated voltage of a VT is selected as the indicator rating.	93~94						
Cover	Without setting needle			Black (B) needles are standard specification. Transparent (T) and special color (F) needles can also be manufactured. (Transparent cover (G) needles can only be manufactured for the Y-N and Y-2N Series.)	28						
00101	With setting nee	dle		Black (BR), transparent (GR), and special color (FR) needles are available. (Please note that not all options are available for all models.)							
Special specifications				for information regarding specifications for environments where there are special conditions ment), corrosive gases (supplementary anti-corrosion treatment) or high-frequency circuits.	10						

Note 1. The empty squares (\Box) are replaced with letters/numbers to specify the model and specifications. **Note 2.** The asterisks (*) are replaced with S or D to identify whether the indicator has one (S) or two (D) needles.

Products List

1. Rectangular Indicators (Y-2N Series, Y-N Series)

	Indiaat	hor hu		DC am	matara	DOwell			AC am	meters			AC vol	tmeters	
	Indicat	tor ty	be	DC am	meters	DC volt	meters	Non-unifo	orm scale	Uniform	n scale	Non-unifo	orm scale	Uniform	n scale
	Appea	aranc	e	e realization	A -	e series a	The second se	R. C.	1979 Pys	o Anna	A A A A A A A A A A A A A A A A A A A				V Second
	Accurac	cy (cla	iss)	2.5	1.5	2.5	1.5	2.5	1.5	2.5	1.5	2.5	1.5	2.5	1.5
	VON	s E f 100×85		YM-206NDA	—	YM-206NDV	_	YS-206NAA	_	YR-206NAA	—	YS-206NAV	_	YR-206NAV	—
ne	Y-2N		85×75	YM-208NDA	_	YM-208NDV	_	YS-208NAA	_	YR-208NAA	_	YS-208NAV	_	YR-208NAV	—
Model name	Series	um)	100×85	YM-210NDA	_	YM-210NDV		YS-210NAA		YR-210NAA	—	YS-210NAV	_	YR-210NAV	_
labo	VN	Size	82×82	YM-8NDA	—	YM-8NDV		YS-8NAA		YR-8NAA	—	YS-8NAV	—	YR-8NAV	_
Ĕ	Y-N Series	S	102×102	YM-10NDA	—	YM-10NDV	_	YS-10NAA	_	YR-10NAA	_	YS-10NAV	_	YR-10NAV	—
	Genes		122×122	-	YM-12NDA	_	YM-12NDV	_	YS-12NAA	-	YR-12NAA	_	YS-12NAV	_	YR-12NAV
	Operatior	n prin	ciple	Movab	ole coil	Movab	ole coil	Movable	iron core	Rec	tifier	Movable	iron core	Rec	tifier
Indicator ratings	I	Direc	t	100, 200, 300, 1, 3, 5, 10, 20, 100, 200, 500, 1, 2, 5, 7.5, 10	, 50mA mA	1, 3, 5, 10, 30, 50, 100 300, (500),	D, 150V	500mA 1, 3, 5, 10/ 15, 20, 30/		(200), (300), 1, 3, 5, 10, 2 75, 100, 200 1, 3, 5, 10, 1	0, 30, 50mA , 500mA	50, 150, 30 (600)V	Note 2	5, 10, 30, 8 100, 110, ⁻ 260, 300, ((500), (600	150, 190V (400)V
ndic	Combine	ed wi	th shunt,	1~75	500A	750~2	2000V	5A,	1A	5A,	1A	15	0V	15	0V
_	multiplier,	or tra	ansformer	(combined	with shunt)	(combined w	ith multiplier)	(combined with cu	rrent transformer)	(combined with cu	rrent transformer)	(combined with instrum	ent voltage transformer)	(combined with instrum	ent voltage transformer)
	Scale	Ordi	nary	C)	0)	()	()	()	0)
	oculo	Expa	anded				_	0		(Note 3		_	-	_
		Blac	k (B)	C)	0)	(()	()	()
	Cover		sparent (G)	C		0		(()	0	
			color coating (F)			2			7	4			7		7
		d nee		C		C		(((C	
su	-		y class Note 4					⊖(Class 1.5)		· · · · ·	, ,	○(Class 1.5)	, ,	⊖(Class 1.5)	, ,
atio	Foreig							4		4			7		
cific	Special							4		4			7		7
specifications		ible s		0		0)	())
Special			s/bands	0		C)	()	()	()	0)
Spe		Shun		0		-	-		_		_		_	-	-
		ad wi		0					_		-				
-			nent resistor	0		-		-	-		-	-		-	
Pa	ge with spee	cifica	tions table	4	3	4	1	4	Э	5	U	5	1	5	2

Remarks All indicators, excluding special grade and foreign standard specification indicators, comply with the Japanese Industrial Standards relating to direct-acting electrical indicators and have the JIS mark.

However, the JIS mark may not apply depending on the operating circuit voltage or rated voltage. Refer to the Reference Chart for Test Voltages and JIS Mark on p.25/26 for details.

Note 1. The operating circuit voltage is 300V or less for the Y-2N Series and 600V or less for the Y-N Series.

Note 2. Parentheses () indicate that some models cannot be manufactured with this rating. Refer to the specifications tables starting on p.45 for details.

Note 3. Some models cannot be manufactured for some ratings. Refer to the specifications tables starting on p.45 for details.

Note 4. Please designate the frequency if a special accuracy class is required for an AC indicator.

	Ind	icator	tvn	e	Wattm	neters	Varm	eters	Power fac	tor meters	Frequenc	cy meters		Receiving	indicators	
		loutor			matan		vann		Balanced circuit	Unbalanced loads	Troquori	y motoro		ricconving	Indicatoro	
	Ар	opeara	ance	9	Securiture KI	еттурара Потурара М еттурара М	too kvar La		internet into CC	SØ UA	Sprant H	Z		Strateging 9	6 	
	Accu	Y-2N Series 85×71 100×8 82×83 102×11 102×11 102×11 102×11 Y-N Series N 9 102×11 122×13		ss)	2.5	1.5	2.5	1.5		5	1	0.5	2.5	1.5	2.5	1.5
	VON			64×60	YP-206NW	—	YP-206NVAR	_	YP-206NPF	YP-206NPFU	YP-206NF	_	YM-206NRI	_	YR-206NRI	_
Ъ	Y-2N		<u> </u>	85×75	YP-208NW	_	YP-208NVAR	_	YP-208NPF	YP-208NPFU	YP-208NF	_	YM-206NRI — YM-208NRI — YM-210NRI — YM-8NRI — YM-10NRI —		YR-208NRI	_
nar	Series	S		100×85	YP-210NW	_	YP-210NVAR	_	YP-210NPF	YP-210NPFU	YP-210NF	_	YM-210NRI — YM-8NRI —		YR-210NRI	_
Model name			IZE	82×82	YP-8NW	—	YP-8NVAR	_	YP-8NPF	YP-8NPFU	YP-8NF	_	YM-8NRI — YM-10NRI —		YR-8NRI	_
Σ	Series 102×10 122×12		102×102	YP-10NW	_	YP-10NVAR	_	YP-10NPF	YP-10NPFU	YP-10NF	_	YM-10NRI	_	YR-10NRI	_	
	Series	S		122×122	_	YP-12NW	_	YP-12NVAR	YP-12NPF	YP-12NPFU	_	YP-12NF	—	YM-12NRI	—	YR-12NRI
	Opera	ation p	orino	ciple	Trans	ducer	Trans	ducer	Trans	ducer	Trans	ducer	Movat	ovable coil Rectifier		tifier
	1-nhaso 2-	beration principle se 2-wire 110V 5A		10V 5A	0.4~0.6kW				Note 5 LEAD LAG —				100, 200, 3	300 <i>µ</i> A		Note 1, 2
S	1-011036 2-	WIIC	2	20V 5A	0.8~1	.2kW	-	-	0.5~1~0.5	_			500μA 1, 5, 10, 20	JmΔ	(200), 300, 1, 3, 5, 10,	
Indicator ratings	1-phase 3-	wire	100	/200V 5A	0.8~1	.2kW			-	-	45~	55Hz	1, 3, 5, 10, 20		30, 50, 75r	
r rai	3-phase 3-	wire	1	10V 5A	0.8~1	.2kW	0.8~1	.2kvar	LEAD0.5~1			65Hz	30, 50, 100	VC	100, 200, 5	500mA
cato	o priase o			20V 5A	1.6~2	.4kW	1.6~2	.4kvar		~U.JLAU		65Hz	Zero-supp	ressed	1, 3, 5, 10, 15	
ndic			<u>110</u> √3	/110V 5A	0.8~1	.2kW	0.8~1	.2kvar			-10-10	50112	indicator 1-5, 2-10m	hΔ	5, 10, 30, 5 100, 150, 3	,
-	3-phase 4-	wire	110	/190V 5A	1.4~2	.0kW	1.4~2	.0kvar	_				4-20, 10-5		100, 100, 0	
			220	/380V 5A	2.8~4	.0kW		-	-	-			1-5V			
		Black		(B)	C		()	())	0)	C)
0	Cover	Trans	par	ent (G)	0		()	(C	()	0)	0)
		Special	l colo	or coating (F)	L			7	4	2		2	4			
suc		Red r			C			2	(C	()	0		C	-
icatic	<u> </u>			class Note 4	⊖(Class 1.5)	⊖(Class 1)	○(Class 1.5)	⊖(Class 1)	-	-	-		⊖(Class 1.5)	⊖(Class 1)	⊖(Class 1.5)	⊖(Class 1)
specifications	For	reign s	stan	dards	L		4			2		2		7		
al sp	· · ·			onment	L			7	1	2		2				
Special		Double			C)		-	()	C		C	
Ś				/bands	C)	()	()	-	-	0		C	-
	Adjust	tment	res	istor	-	_	-	_	-	- Net- C	-	_	0)	-	-
	Ac	cesso	ories	6	T-150 1 unit	—	T-150 1 unit	—	Note 7 T-100 1 unit	Note 8 T-150 1 unit	-	_	-		-	
Pa	age with s	specifi	icati	ons table	5	3	5	7	61	63	6	6	67		6	8

Note 5. 1-phase, 2-wire power factor meters can only be manufactured for YP-12NPF.

Note 6. 3-phase, 4-wire power factor meters can only be manufactured for YP-206NPFU, YP-208NPFU, YP-210NPFU, YP-8NPFU, YP-10NPFU and YP-12NPFU.

Note 7. T-100 is provided as an accessory with YP-206NPF, YP-208NPF, and YP-210NPF.

Note 8. T-150 is not provided as an accessory with YP-12NPFU.

Model Naming System

Size (wi	Size (width×height)										
Code	Size (mm)	Code	Size (mm)								
206N	64×60	8N	82×82								
208N	85×75	10N	102×102								
210N	100×85	12N	122×122								

Indicato	r type		
Code	Indicator type	Code	Indicator type
DA	DC ammeter	VAR	Varmeter
DV	DC voltmeter	PF	Power factor meter (balanced circuit)
AA	AC ammeter	PFU	Power factor meter (unbalanced load)
AV	AC voltmeter	F	Frequency meter
W	Wattmeter	RI	Receiving indicator

Products List

2. Wide-angle Indicators (L-N Series)

	L.	ndicator ty	~~	DC am	motoro	DC volt	matara		AC am	meters			AC volt	tmeters	
	п		pe	DC am	meters		meters	Non-unife	orm scale	Uniforr	n scale	Non-unifo	orm scale	Uniforn	n scale
	,	Appearanc	e			200 V V V		20	60 80 100 A	20 8	60 80 100 A	2000	3000 4500 4500	3000 6000 9000 9000 9000 9000 9000	
	Ac	curacy (cla	ass)	2.5	1.5	2.5	1.5	2.5	1.5	2.5	1.5	2.5	1.5	2.5	1.5
M	odel	Size	80×80	LM-80NDA	-	LM-80NDV	-	LS-80NAA	_	LR-80NAA	_	LS-80NAV	_	LR-80NAV	-
na	ame	(mm)	110×110	_	LM-110NDA	-	LM-110NDV	_	LS-110NAA	_	LR-110NAA	_	LS-110NAV	_	LR-110NAV
	Operation principle			Movab	ole coil	Movable coil		Movable	iron core	Rectifier		Movable iron core		Rectifier	
ndicator ratings		Direc	t	300, 500µA 1, 3, 5, 10, 20, 5 200, 500mA 1, 2, 5, 7.5, 10, 1		1, 3, 5, 10, 50, 100, 15 500, 600V		1, 3, 5, 10, 15, 20, 30,		1, 3, 5, 10, 20, 75, 100, 200, 5 1, 3, 5, 10, 15,	00mA	150, 300V 600V	Note 3	5, 10, 30, 50, 5 110, 150, 190, 300, 400, 500,	260V
Indi		nbined with iplier, or tra	· ·	1~75 (combined		750~2 (combined w		5A, (combined with ci		5A, (combined with cu		-	OV ent voltane transformer)	15) (combined with instrume	
		Ordinary			,			(combined with current transformer)							
S	cale	Expande		_	-	_	-	0		Note 2			_		
		Black		()	0)	0		0		()	0	
C	over	Special col	or coating (F)				2		2	4	2	4	2		2
		Red nee	• • • •	0)	0)	()	()	()	0)
S	Speci	al accurac	y class Note 4	O(Class 1.5)	O(Class 1)	O(Class 1.5)	O(Class 1)	O(Class 1.5)	O(Class 1)	O(Class 1.5)	O(Class 1)	O(Class 1.5)	O(Class 1)	O(Class 1.5)	O(Class 1)
tion	F	oreign sta	ndards		7	Z	7	4	1	4	7		2		7
ifica	Sp	pecial envir	ronment	L	7	L	7	4	7	L	7	L	7	L	7
Special specifications		Double s	cale	C)	C)	()	()	()	C)
als	Co	olored line:	s/bands	C)	C)	()	()	()	C)
peci		Shun	t	C)	_	-	_	_	-	_	-	_	_	-
S		Lead wi	res	C)	_	_	_	_	_	_	_	_	_	_
	Lead wire adjustment resistor			C)	_	-		_	-	_		_	_	-
_	age with specifications table 43				3	4	7	4	9	5	0	5	1	5	2

Remarks All indicators, excluding special grade and foreign standard specification indicators, comply with the Japanese Industrial Standards relating to direct-acting electrical indicators and have a JIS mark.

However, the JIS mark may not apply depending on the operating circuit voltage or rated voltage. Refer to the Reference Chart for Test Voltages and JIS Mark on p.25/26 for details.

Note 1. The operating circuit voltage is 600V or less.

Note 2. Some models cannot be manufactured for some ratings. Refer to the specifications tables starting on p.45 for details.

Note 3. Models with an indicator rating of 600V are provided with the KR-1 accessory.

Note 4. Please specify the frequency if a special accuracy class is required for an AC indicator.

Model Naming System

	Ind	icato	r type	Wattn	actors	Vorm	eters	Power fac	ctor meters	Frequency meters		Popoiving	indicators	
	inu	icalo	riype	vvaun	leters	Valli	IEIEIS	Balanced circuit	Unbalanced loads	Frequency meters		neceiving	Indicators	
	Ap	pear	ance	25 15		400 400 400 400 400 400 400 500 400 500 5		9 9 9 7 Lead 1 40 7 5 5 5 5 COS5		50 50 Hz			80 80 %	
	name (mm) 110×1 Operation principle		(class)	2.5	1.5	2.5	1.5		5	0.5	2.5	1.5	2.5	1.5
Μ	odel	Size	80×80	LP-80NW	_	LP-80NVAR	—	LP-80NPF	LP-80NPFU	LP-80NF	LM-80NRI	—	LR-80NRI	—
n	ame	(mm) 110×110	_	LP-110NW	—	LP-110NVAR	LP-110NPF	LP-110NPFU	LP-110NF	—	LM-110NRI — LR-1		LR-110NRI
	110V 54		principle	Trans	ducer	Transducer		Transducer		Transducer	Movable coil		Rectifier	
	1-nhase 2-	wire	110V 5A	0.4~0	.6kW									Note 1, 2
	1-phase 2-wire		220V 5A	0.8~1.2kW				LEAD LAG 0.5~1~0.5			300, 500μA		$500 \mu A$	
sbu		wire	100/200V 5A	0.8~1.2kW							1, 5, 10, 20mA 1, 3, 5, 10, 15V		1, 3, 5, 10, 20mA 30, 50, 75mA	
ratir		110V 5A	0.8~1.2kW		0.8~1.2kvar		LEAD0.5~1	Note 6	45~55Hz	30, 50, 100V		100, 200, 500mA		
tor			220V 5A	1.6~2.4kW		1.6~2.4kvar		LEAD0.5*1		55~65Hz	Zero-supp	ressed	1, 3, 5, 10, 15, 20A	
Indicator ratings	3-phase 4-	wire	$\frac{110}{\sqrt{3}}$ /110V 5A	0.8~1.2kW		0.8~1.2kvar		_		45~65Hz	indicator 1-5, 2-10mA 4-20, 10-50mA		5, 10, 30, 50, 75V 100, 150, 300V	
	5-pilase 4-	wiie	110/190V 5A	1.4~2	2.0kW	1.4~2	.0kvar				1-5V	UNIA		
			220/380V 5A	2.8~4	.0kW	-	_	-	-					
	Cover -	Blac	к (В)	()	()	(0	O	()	(\supset
		Specia	al color coating (F)	4	7	4	2		Δ	Δ	4	Δ	4	Δ
6			needle)		C	(0	0	(С	(C
tion	Special	accu	racy class Note 4	O(Class 1.5)	O(Class 1)	⊖(Class 1.5)	O(Class 1)	-	_	—	O(Class 1.5)	O(Class 1)	O(Class 1.5)	O(Class 1)
tifica	For	eign	standards	4	7	4	2	-	Δ	Δ	4	Δ	4	Δ
spec	Spe	cial e	nvironment	4	7	4	2		Δ	Δ	4	Δ	4	Δ
Special specifications	[Doub	le scale	()	(C	-	_	—	(С	(C
Spec	Colo	ored	ines/bands	()	(C	(0	0	(С	(C
	Adjı	ustm	ent resistor	-		-	-	-	_	—	(С	(C
	Ac	cess	ories	T-150 1 unit	—	T-150 1 unit	-	_	Note 7 T-150 1 unit	—	-	_	-	_
Pa	age with s	speci	fications table	5	3	5	57	61	63	66	e	67	6	8

Note 5. 1-phase, 2-wire power factor meters can only be manufactured for LP-110NPF.
Note 6. 3-phase, 4-wire power factor meters can only be manufactured for LP-80NPFU and LP-110NPFU.
Note 7. T-150 is not provided as an accessory with LP-110NPFU.

Products List

3. Indicators with Changeover Switch (YR-UN Series)

			U V	,					
	Indicator ty	ре	AC am	neters	AC vol	tmeters			
	Appearance	De		90 90 A 92 92 92 92 92 92 92 92 92 92	0,	200 200 V V 200 V 200 007 45 5-7 7-7 200 00 007 00 007 007 007 007			
A	odel Size 102×11		2.5	1.5	2.5	1.5			
Model	Size	82×99	YR-8UNAA	_	YR-8UNAV	_			
name	odel Size 102×119 ame (mm) 122×139		YR-10UNAA	_	YR-10UNAV	—			
name	me (mm) 122×139 Operation principle		—	YR-12UNAA	— YR-12UNAV				
	122×139		Rect	ifier Note 1	Rec	tifier			
atings	Direct		1, 5, 10, 15	5, 20, 30A ^{Note 2}	150, 30	0, 600V			
Indicator ratings	Direct Combined with transformer		5A, (combined with cu			0V ent voltage transformer)			
Scale	Ordinar	у	C)	0				
Scale	Expand	ed	C)					
	Black	(B)	C		0				
Cover	Transpa	rent (G)	C)	(C			
	Special co	lor coating (F)	Δ	<u> </u>	2	2			
Terminal	Direct in	ndicator	4 term	inals	3 terr	ninals			
configuratio	on Indicator comb	ined with transformer	3 terminals Note 3 (operation principle: movable iron core)	3 terminals Note 3	3 terr	ninals			
suo	Red ne	edle	C)	(C			
dS Cati	Red needle Special accuracy class			-	-	_			
specifications	Foreign standards			-	-	_			
ds la b	Special envi	ronment		-	-	_			
Special s	Double s	scale	C)	(C			
ດ ດີ (Colored line	s/bands	C)	(C			
Page wi	ith specifica	tions table	69	9	7	0			

Remarks All indicators, excluding special grade and foreign standard specification indicators, comply with the Japanese Industrial Standards relating to direct-acting electrical indicators and have a JIS mark.

Note 1. The 3-terminal, CT-combined models of YR-8UNAA and YR-10UNAA operate on the principles of the movable iron core.

Note 2. The operating circuit voltage is 600V or less.

Note 3. A 4-terminal AC ammeter to be combined with a transformer can be manufactured if required.

Model Naming System

Demand meter relays

 \bigcirc

0

 \triangle

4. Mechanical Demand Meters and Demand Meter Relays (LB-N Series)

I In	dicator type						1	
		AC am	meters	AC vol	tmeters	Wattmeters	Receiving indicators	AC ammeters
A	ppearance			200				
Accuracy c	lass (driving needle)	2.5	1.5	2.5	1.5	1.5	1.5	1.5
D Needle	Size	80×80	110×110	80×80	110×110	110×110	110×110	110×110
With needl	le showing max. value remaining	LB-8ZNAA	LB-11ZNAA	LB-8ZNAV	LB-11ZNAV	LB-11ZNW	LB-11ZNRI	_
With needle	showing min./max values remaining	—	—	_	—	LB-11YNW	LB-11YNRI	—
With needle With instantaneous	With needle showing max. value remaining	_	LB-11ZRNAA	—	—	LB-11ZRNW	LB-11ZRNRI	LB-11ZRMNAA
meter	With needle showing min./max values remaining	_	—	—	LB-11YRNAV	LB-11YRNW	LB-11YRNRI	—
Oper	ration principle	Bin	netal (instantane	ous rectifying me	ter)	Bimetal (instantaneous mete	er is movable coil)	Bimetal (instantaneous rectifying meter)
Ind	Note 1	5. (combined transfo	with current	(combined w	ansformer)	1-phase 110V 5A 0.4-0.6kW 2-wire 220V 5A 0.8-1.2kW 3-phase 110V 5A 0.8-1.2kW 3-wire 220V 5A 1.6-2.4kW 3-phase 110/ \sqrt{3}/110V 5A 0.8-1.2kW	DC 1mA (internal resistance: 1kΩ)	5A (combined with current transformer)
Time ir	nterval (minutes)	2, 15	2, 5, 10, 15	:	2	2, 15	2, 15	10, 15
Cover	Black (B)	0)	()	0	0	0
	Special color coating (F)	Z	7	4	2	Δ	Δ	Δ
Conta	ct configuration				_			No-voltage 1C contact
Auxilia	ry power supply			_		100VAC ⁺¹⁰ ₋₁₅ % 50	-60Hz	both 100-110VAC/DC
Remainir	ng needle resetting		Both manual and	lelectromagnetic	resetting (electro	omagnetic resetting voltage	both 100-110VA	C/DC)
Color	red lines/bands	C)	(C	0	0	0
A	ccessories	-	_	-	_	T-150, T-150LB 1 unit each	T-150LB 1 unit	—
Page with	specifications table	7	2	7	2	73	73	75

Demand meters

Remarks All indicators, excluding special grade and foreign standard specification indicators comply with the Japanese Industrial Standards relating to direct-acting electrical indicators and have a JIS mark (excluding LB-8ZNAA, LB-8ZNAV and LB-11ZRMNAA).

Note 1. Use an AC indicator in combination with an instrument current transformer and an instrument voltage transformer.

Model Naming System

With needle showing warning settings

Products List

5. Meter Relays

	Ir	ndicator typ	e	DC am	meters	DC volt	tmeters	AC am	meters	AC volt	meters
	ļ	Appearance	2		0 0 0 0 0		100 150 150	0.00 Å		200	400
	Ac	ccuracy clas	ss	2.5 1.5		2.5	1.5	2.5	1.5	2.5	1.5
ame	Setting r	needle	Size	100×83	110×110	100×83	110×110	100×83	110×110	100×83	110×110
Model name	Uppe	er/Lower-lim	it settings	YM-210MRNDA	LM-11MRNDA	YM-210MRNDV	LM-11MRNDV	YR-210MRNAA	LR-11MRNAA	YR-210MRNAV	LR-11MRNAV
Mod	U	Jpper-limit s	etting	YM-210MRHNDA	LM-11MRHNDA	YM-210MRHNDV	LM-11MRHNDV	YR-210MRHNAA	LR-11MRHNAA	YR-210MRHNAV	LR-11MRHNAV
	Ope	eration princ	iple	Moval	ole coil	Movat	ole coil	Rec	tifier	Rec	tifier
Indicator ratings		Direct		±0.5mA, 1, 10	0mA, 1, 3, 5A	1, 50, 10	00, 150V	100, 200	, 500mA	10, 30,	50, 75V
or rat				Zero-suppressed	indicator 4-20mA	300, 500V		1, 5, 10A		100, 15	0, 300V
licato	Combined with shunt or transform		or transformer	1~75		_	_	5A,		_	0V
pul	1			(combined	,			`	,	(combined with instrum	, , , , , , , , , , , , , , , , , , ,
s	Scale Ordinary			()	C)	(()
		Expanded		-	-	_		Δ			-
c	cover ⊦	Black	(B)	(0		(0	
		Special color		4		Δ		Δ		4	
Re	elay sett	ting range	Upper limit	5~100%	10~100%	5~100%	10~100%	5~100%	10~100%	5~100%	10~100%
			Lower limit	0~95%	0~90%	0~95%	0~90%	0~95%	0~90%	0~95%	0~90%
		act configur		10	contact each to			contact for upper		pacity 250VAC, 3	A)
	Auxilia	ary power s				10	00-110VAC/200-	220VAC selectab	e		
suc		Red need			-		-		-		-
catic	<u> </u>	oreign stan			-		_				
scific	Sp	Decial enviro				-		-		-	-
Special specifications	Colore	Double so		(0		((
scial	Colored lines/colored bands			(ر ا		-)
Spe		Lead wire		(
P		n specificati		7		- 8		- 8		- 8	2
	•	•		ve a IIS mark	0	0	•	0		0	_

Remarks These models do not have a JIS mark.

Model Naming System

Power factor meter (unbalanced loads)

Frequency meter

Receiving indicator

F

RI

	Indiaat	or tr / 00	-	\\/attm	atoro		atara	Dower for	tor motors	Frequence	u matava	Dessitying	indiactors		
	Indicat	or type	9	Wattm	ieters	varm	eters	Power fac	tor meters	Frequenc	cy meters	Receiving	Indicators		
	Арреа	arance		e Kv	20 10 10 10 10 10 10 10 10 10 1	200 400 600 • * for	200 400 - 600 - ar		<u>•</u>	Hz		60 80 100			
	Accurac	cy clas	s	2.5	1.5	2.5	1.5	Ę	5	-		2.5	1.5		
ame	Setting needle		Size	100×83	110×110	100×83	110×110	100×83	110×110	100×83	110×110	100×83	110×110		
Model name	Upper/Low	er-lim	it settings	YM-210MRNW	LM-11MRNW	YM-210MRNVAR	LM-11MRNVAR	YM-210MRNPFU	LM-11MRNPFU	YM-210MRNF	LM-11MRNF	YM-210MRNRI	LM-11MRNRI		
Moc	Upper-	limit s	etting	YM-210MRHNW	LM-11MRHNW	YM-210MRHNVAR	LM-11MRHNVAR	YM-210MRHNPFU	LM-11MRHNPFU	YM-210MRHNF	LM-11MRHNF	YM-210MRHNRI	LM-11MRHNRI		
	Operation	n princ	iple	Trans	ducer	Trans	ducer	Trans	ducer	Trans	ducer	Movat	ole coil		
	1-phase	11	0V 5A	0.4~0	.6kW	_	_	_	_						
ing	2-wire 2	22	0V 5A	0.8~1.2kW						45~5	5Hz	±0.5	δmA		
r rat	3-phase	11	0V 5A			0.8~1	0.8~1.2kvar		Note 1		5Hz	1, 10mA			
ato	3-wire	22	0V 5A	1.6~2	.4kW	1.6~2	.4kvar		1~0.5LAG	45~6		Zero-suppres	sed indicator		
Indicator ratings	3-phase 4-wire	<u>110</u> √3	/110V 5A	0.8~1	.2kW	0.8~1.2kvar		LEADU.3~1~0.3EAG		-0-1		4-20mA			
	Black		(B)	C)	()	(C	0)	()		
	Specia	al color	coating (F)	Δ	7	L	7	Δ		L	7	L	7		
Pol	ay setting ra	ngo	Upper limit	5~100%	10~100%	5~100%	10~100%	5~100%	10~100%	5~100%	10~100%	5~100%	10~100%		
ner	ay setting la	inge	Lower limit	0~95%	0~90%	0~95%	0~90%	0~95%	0~90%	0~95%	0~90%	0~95%	0~90%		
	Contact co	nfigur	ation		1C contact e	each for uppe	limit and low	er limit or 1C	contact for up	per limit (cont	act capacity 2	250VAC, 3A)			
	Auxiliary po	ower s	upply				100-	110VAC/200-2	220VAC selec	table					
ions	Rec	d neec	lle	_	-	-	-	-	-	_	-	-	-		
ificati	Foreigr	n stan	dards	_	-	_	-	-	_	_	-				
Special specifications	Special environment			_	-	_	-	-	_	_	-	-			
cials	छ Double scale			C)	()	-	-	_	-	()		
Spe	Colored	l lines/	'bands	C)	()	(C	()	()		
	Acces	sories	;	T-150	1 unit	T-150	1 unit	T-150	1 unit	T-100	1 unit	_	_		
Pa	ge with spec	cificati	ons table	8	3	8	3	8	5	8	6	87			

Note 1. The YM-210MRNPF, YM-210MRHNPF, LM-11MRNPF, and LM-11MRHNPF models (provided with the T-100 accessory) are for 3-phase, 3-wire balanced circuits.

Products List

6. Indicators with Maximum and Minimum Needles

	Indicator type	DC ammeters	AC ammeters	AC voltmeters	Receiving indicators
	Appearance				
ŀ	Accuracy class	1.5 (remaining needle: 2) 1.5 (remaining needle: 2)		ing needle: 2)	1.5 (remaining needle: 2)
	Size (mm)	110×110	110×110	110×110	110×110
Model	With max. value remaining needle	LM-11ZNDA	LM-11ZNAA	LM-11ZNAV	LM-11ZNRI
name	With max. and min. value remaining needles	LM-11YNDA	LM-11YNAA	LM-11YNAV	LM-11YNRI
Op	peration principle	Movable coil	Red	ctifier	Movable coil
Ir	ndicator ratings	5, 10, 15, 20mA 1, 3, 5, 10, 15A ^{Note 1}	1, 5, 10, 15A 20, 30A	100, 110, 150, 190V 260, 300V	5mA
F	Response time	0.3 seconds	0.1 seconds	0.1 seconds	0.3 seconds
Cover	Black (B)	0	0	0	0
Cover	Special color coating (F)	Δ	Δ	Δ	Δ
Remai	ning needle resetting	Both manual and	electromagnetic resetting (electro	omagnetic resetting voltage: both	100-110VAC/DC)
	Accessories	—	T-150 1 unit	T-150 1 unit	_
Page wi	ith specifications table		8	39	

Remarks These indicator models do not have the JIS mark.

Note 1. Models with a rating exceeding 15A DC are manufactured as 300mV-shunt-combined units.

Earth-leakage detectors Dual-element indicators Indicator type Synchroscopes Appearance Detects earth faults of Detects generator-side Application Measures two elements 3-phase 3-wire circuits and bus line-side phases Rectangular indicator Model name Wide-angle indicator LM-11NGD LI-11NSY LM-11NE Accessories T-150 1 unit T-150 1 unit ____ Page with specifications table 91 93 95

7. Special Application Meters

Remarks The synchroscope and dual-element indicator are compliant with Japanese Industrial Standards relating to direct-acting electrical indicators and therefore have the JIS mark.

Indicator Line-up, Precautions & Specificat

0

0

 \triangle

8. Bar-shaped Indicators (F-N Series)

	ndicator type		AC ind	licators					
	Appearance		0 1	-00 -14 -14 -13 -13 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0		-		70 -20	- 543 - 226 - 116 - 5
A	ccuracy class	1.5 or 2.5		1 or 1.5		2.5		1.5	
	Size (mm)	100×30	130×36	150×40	170×42	100×30	130×36	150×40	170×42
Model name	1-needle	FM-210SN	FM-213SN	FM-215SN	FM-217SN	FR-210SN	FR-213SN	FR-215SN	FR-217SN
	2-needle	FM-210DN	FM-213DN	FM-215DN	FM-217DN			_	_
Ope	eration principle		Movable	coil type		Rectifying type			
Indicator ratings	Current input	1, 5, 1, 3,	(100), 500mA Note 1, 5, 10, 50, 100, 500mA 1, 3, 5, 10A 4-20mA (zero-suppressed indicator)						
	Voltage input		, 10, 15, 30, 50, ⁻ 1-5V (zero-supp	100, 150, 300V ressed indicator)		5, 10, 30, 50, 100, 150V			
Cover	Black (B)		0				()	
	Special color coating (F)		Δ					2	
Mounting	Vertical		0				¢		
	Horizontal		0				C)	
ations Na	ameplate engraving		Δ					2	
Special specifications Lag u C	umber plate engraving		Δ					2	
scial s	Double scale		0				(-	
	olored lines/bands		0				(-	
Page wit	h specifications table		97				9	8	
Domorko A	ll indiactora evoluding	appaiol grada a	nd foreign stand	ard appointion	indiantora comp	ly with the long	noon Industrial C	Standarda ralatin	a to direct opting

Remarks All indicators, excluding special grade and foreign-standard specification indicators, comply with the Japanese Industrial Standards relating to direct-acting electrical indicators and have the JIS mark.

Note 1. The operating circuit voltage is 300V or less.

Note 2. Parentheses around an indicator rating indicate that the rating is only available for certain models. Refer to the specifications for details.

Model Naming System

Glossary of Terms

Term	Meaning	Term	Meaning
Electric indicator (direct-acting indicator)	An indicator with a needle driven by a mechanically coupled movable element.	Intrinsic error	Error of an indicator in a standard state. Intrinsic error = $\left(\frac{\text{target value - reference value}}{\text{base value}}\right) \times 100 (\%)$
Electronic indicator	An indicator that uses an electronic means to measure and display an electrical quantity or non-electrical quantity.		A specified standard-error value used to define the accuracy of an indicator. The value varies according to the type of
Fixed indicator (indicator for switchboard)	Indicators that are mounted permanently, connected to an external circuit via fixed conductive wires.		 indicator. For ammeters, voltmeters, wattmeters and varmeters, the standard value is the upper value of the measurement range.
Portable indicator	An indicator that can be transported and used in different places.		(If there are both mechanical and electrical zero points in the scale [i.e., there is a negative and positive range], the
Wide-angle indicator	An indicator with a scale spanning a range of 180° or more.	Standard value	standard value is the sum of the absolute values of the
Receiving indicator	Indicators with scales that differ from the quantity of electricity input, but the relationship between the quantity of electricity input and scale values is known.		electrical quantity corresponding to the two limits of the measurement range.) (If the scale does not match the quantity of the electricity input, the standard value is the span.)
Zero-suppressed	An indicator with a mechanical zero point outside the range		Frequency meter
indicator	of the scale.		The upper value of the measurement range.
	An indicator that operates based on the interaction between		Power factor meter
Movable coil	magnetic fields produced by a fixed, permanent magnet and		Electrical angle of 90°.
indicator	by a current inside a movable coil.		The algebraic difference between the upper and lower limits
	Indicators that have fixed and moving cores made of soft	Span	of the measurement range.
Movable iron core indicator	magnetic material and operate based on the repulsive force (and suction) generated as a result of magnetizing the fixed and mobile iron cores by passing an electrical current	Overshoot	The difference between the maximum deflection value and the final value when a measured quantity changes suddenly.
	through the fixed coil.		
Rectifier indicator	An indicator combining a DC-operated indicator and a rectifier to measure AC current/voltage.	Response time	When the measurement value changes suddenly from zero to a specified value, the time (seconds) until the needle stops at its final stationary position.
Transducer indicator	An indicator that converts a quantity of AC electricity to a DC voltage/current using an electronic device or circuit, and then indicates the quantity using a movable coil indicator.	Residual displacement	The deflection of a mechanically controlled movable element still remaining after the cause of the deflection has been eliminated.
Bimetal indicator	Heat-based indicators that operate by changing the shape of the metal elements, which occurs when they are heated directly/indirectly via an electrical current.	Extent of influence	In general, the potential extent of influence that an external factor has on performance (e.g., ambient temperature, external magnetic field).
Compatible accessory	An accessory that has special properties/accuracy itself, regardless of whether or not it is combined with the performance of an indicator.	Distortion rate (total harmonic distortion rate)	Rate: Effective value of the harmonics contained Effective value of non-sinusoidal wave
Limited-compatibility accessory	An accessory that has special properties/accuracy itself and can be combined with an indicator that has special performance.	Ripple content	Content: Effective value of varying component value of DC component
Dedicated accessory (non-compatible accessory)	An accessory that is adjusted considering the electrical characteristics of the indicator it is combined with.	Standby state	Prior to indicator testing, the specified measurement amount supplied to the circuit being measured.

•Abbreviations for items measured Standard value DA : DC current 1) DA, DV, AA, AV, W, VAR DV : DC voltage The upper limit of the AA : AC current measurement range; the sum of AV : AC voltage the absolute values of both sides W : Power where there is a zero point on the scale [i.e., there are positive and VAR : Reactive power PF : Power factor, phase negative ranges]; the span when F : Frequency the scale does not match the SY : Synchroscope quantity of electricity. 2) F Upper-limit value of the measurement range

3) PF, SY 90° electric angle

Standby conditions

Prior to testing, the following input is applied to meters that are required to have a standby state.

Measured quantity	Input condition	Time
DA, DV, AA, AV	80% of maximum scale value	
W, VAR	Voltage: 100%; power factor (or reactive factor): 1 80% of maximum scale value	15
F	Voltage: 100%; maximum scale value	minutes
PF	Voltage: 100%; current: 80%; power factor: 1	
SY	Voltage: 100%; synchronization point	

Excerpts from Japanese standards

(1) JIS C 1102-1 ~ -9

Influencing itom				Тур	e of	mea	sure	d qu	antity
Influ	encing item	Test conditions	Performance	DA DV	AA ¦A\	a¦w ∕¦vaf	¦ F	P	F¦SY
Inh	erent error	Measure important points under standard conditions	$\pm 100\%$ of the accuracy class		0	10	10	Ċ	\sim
Ambier	nt temperature	Temperature varies ±10°C from standard temperature (23°C)	100% of class index		0	0	0	C	0
ŀ	lumidity	Leave for 96hr in states of 25% and 80% relative humidity, respectively	100% of class index	0	0	10	10	łc	blo
DC measured quantity	Ripple	20% input, and 45-65Hz and 90-130Hz current (AC) superimposed	50% of class index		1				
AC measured	Distortion	AC, DC, W : 20% third harmonic wave content (W: with each measured circuit) PF, F : 15% third harmonic wave content (PF: with each measured circuit)	100% of class index (rectifying type is exempt)		0	0	0	C	0
quantity	Frequency	Vary by $\pm 10\%$ from reference frequency	100% of class index		0	010	1	łC	0¦0
	Voltage component	Vary by $\pm 15\%$ from reference voltage	100% of class index			10	0	C	0
	Current component	Vary by 20 to 120% of rated current	100% of class index		i	1	1	łC	
Po	wer factor	Power factor varies from 1 to 0.5 (var: lagging phase angle: 30°)	100% of class index			10	1	-	
Pha	se balance	One current circuit removed	200% of class index		1	0	-	0	
	etween multiple phase itor elements	One voltage circuit removed	200% of class index		1 1 1	0	 		
	Attitude	Incline of 5°to the front/back/left/right from the standard attitude	50% of class index	0	10	10	10	C	0
Externa	I magnetic field	Magnetic field of 0.4kA/m	Movable iron core: 6%; others: 1.5%		0	0	0	C	0
Ferroma	agnetic support	Mounted to a 2mm-thick steel-plate panel	Within limits of inherent error	0	10	10	10	l c	010
Condu	ictive support	Mounted to a 1.5mm-thick (or thicker) aluminum panel	Within limits of inherent error	0	0	0	0	C	0
- ·	Overshoot	Input of approx. 2/3 scale length; measure initial overshoot distance	20% or less if the full deflection angle is less than 180°; 25% or less otherwise		1	1	1	1	
Damping	Response time	Input of approx. 2/3 scale length; measure time to settle within 1.5% 4s or less		10	10	10	10	10	0
Se	If-heating	Changes at 1 to 3 minutes after and 30 to 35 minutes after applying a 90% input.	100% of class index	0	10	10	10	Ċ	010
		Apply power 10-fold that of the rated power nine times for 0.5s at 60s			:	1	1	1	
Short-time overload	Power supply circuit Voltage circuit	intervals and one time for 5s. Apply voltage double that of the rated voltage nine times for 0.5s at 60s intervals and one time for 5s.	Within limits of inherent error	0	0	0	0	C	0
Continuous overload	Current circuit Voltage circuit	Apply current 120% that of the rated current for 2h Apply voltage 120% that of the rated voltage for 2h	Within limits of inherent error	0	0	0	0	C	0
	f current circuit after urrent overload	Apply current 30-fold that of the CT nominal secondary current for 2s (applies to indicators combined with a CT of 1 to 10A)	Current circuit does not open		0	0			
Tempera	ature limit value	40°C for 16h, -25°C for 8h (repeated three times)	Within limits of inherent error		0	0	0	C	0
Deviatior	n from zero point	Measure deviation after applying the maximum value of the measurement range for 30s and zero point setting for 15s.	50% of class index	0	0	10	0	C	010
Mechanical	zero-point adjuster	Maximum adjustment value in increasing/decreasing directions	Range: 2% or 2° or more	0	0	0	0	C	0
	Drop-out frequency	Frequency when rotation stops after increasing and then decreasing the starting circuit frequency.	y. For 3-phase: 1.5Hz or more			1		1	-
Synchroscope	Pull-in frequency	Frequency when rotation starts after increasing and then decreasing the starting circuit frequency.			1	-	1		0
Open circuit Open starting-circuit or operating-circuit sic		Open starting-circuit or operating-circuit side	Index indicates synchronization point ±30 externally		i -		i -		÷
		10-65-10Hz, amplitude: 15mm		1		1	1	1	-
Vibration/Impact Vibration		Sweeping speed: 1 octave/min., No. of sweeps: 5 490m/s ² in X-, Y- and Z-, forward and reverse directions (repeated three times)	100% of class index	0	0	0	0	0	0

(2) JIS C 1010-1 (Measurement Category III, Pollution Degree 2)

Test item	Test conditions	Performance/Reference value		f meas W VAR F	surer	ment PF¦SY
Voltage test	Between entire measurement circuit and outer casing The test voltage value is defined according to the operating circuit voltage. 50Hz/60Hz effective AC voltage, 5s	Dielectric breakdown and flashover must not occur.	0 0	0	2 0	0
Clearance and creeping distance	circuit that is not insulated from the input	Metal and resin connected: basic insulation Ungrounded metal: reinforced insulation or double insulation	0 0	0.0) (2 O

Representative operating circuit voltages and the clearance and creeping distance required

	Standard insulation			Reinforced insulation or double insulation			
Operating circuit voltage	Clearance	Creeping distance	Test voltage value	Clearance	Creeping distance	Test voltage value	
100V	0.5	1.4	840	1.5	2.8	1390	
150V	1.5	1.57	1390	3.0	3.14	2210	
300V	3.0	3.0	2210	5.9	6.0	3480	
600V	5.5	6.0	3320	10.5	12.0	5200	

(3) Reference (JIS C 1102-1: 1997 specified standard)

Test item	Test conditions		Type of measurement
Note 1	Between entire measurement circuit and outer casing	5MΩ or more	
	Apply 500VDC and measure	311122 01 111016	

Note 1. JIS C 1102-1 is not specified in 2007.

Corresponding test voltages according to indicator type

	Indicator type		Model name	Operating circuit voltage or maximum rating	Note 1 Factory-tested voltage	Note 2 JIS voltage test	JIS mark indication	
			YM-206NDA, YM-208NDA, YM-210NDA	300V or less	2210V, 5s	2000V, 1min	Indicated	
DC ammeters			YM-8NDA, YM-10NDA, YM-12NDA	301V~600V	3320V, 5s	2000V, 1min	Not indicated	
			LM-80NDA, LM-110NDA	600V or less	3320V, 5s	2000V, 1min	Indicated	
				1~300V	2210V, 5s	2000V, 1min	Indicated	
				301V~600V	3320V, 5s	2000V, 1min	Not indicated	
			YM-206NDV, YM-208NDV, YM-210NDV	601V~1000V	4300V, 5s	3000V, 1min	Not indicated	
				1001V~1200V	4950V, 5s	5000V, 1min	Not indicated	
				1201V~1500V	5800V, 5s	5000V, 1min	Not indicated	
DC voltmeter	s			1501V~2000V	7400V, 5s	5000V, 1min	Not indicated	
				1~600V	3320V, 5s	2000V, 1min	Indicated	
			YM-8NDV, YM-10NDV, YM-12NDV	601V~1000V	4300V, 5s	3000V, 1min	Not indicated	
			LM-80NDV, LM-110NDV	1001V~1200V	4950V, 5s	5000V, 1min	Not indicated	
				1201V~1500V	5800V, 5s	5000V, 1min	Not indicated	
				1501V~2000V	7400V, 5s	5000V, 1min	Not indicated	
				300V or less	2210V, 5s	2000V, 1min	Indicated	
		Movable iron	YS-206NAA, YS-208NAA, YS-210NAA	301V~600V	3320V, 5s	2000V, 1min	Not indicated	
				Combined with CT	2210V, 5s	2000V, 1min	Indicated	
		core	YS-8NAA, YS-10NAA, YS-12NAA	600V or less	3320V, 5s	2000V, 1min	Indicated	
			LS-80NAA, LS-110NAA	Combined with CT	2210V, 5s	2000V, 1min	Indicated	
AC ammeters	S			300V or less	2210V, 5s	2000V, 1min	Indicated	
			YR-206NAA, YR-208NAA, YR-210NAA	301V~600V	3320V, 5s	2000V, 1min	Not indicated	
		Rectifier	,,,,	Combined with CT	2210V, 5s	2000V, 1min	Indicated	
			YR-8NAA, YR-10NAA, YR-12NAA	600V or less	3320V, 5s	2000V, 1min	Indicated	
			LR-80NAA, LR-110NAA	Combined with CT	2210V, 5s	2000V, 1min	Indicated	
				50~300V	-	-		
			YS-206NAV, YS-208NAV, YS-210NAV		2210V, 5s	2000V, 1min	Indicated	
		A such to the second	YS-8NAV, YS-10NAV	Combined with VT	2210V, 5s	2000V, 1min	Indicated	
		Movable iron	YS-12NAV	50~600V	3320V, 5s	2000V, 1min	Indicated	
		core		Combined with VT	3320V, 5s	2000V, 1min	Indicated	
			LS-80NAV, LS-110NAV	150~600V	3320V, 5s	2000V, 1min	Indicated	
AC voltmeters	s			Combined with VT	3320V, 5s	2000V, 1min	Indicated	
				5~300V	2210V, 5s	2000V, 1min	Indicated	
			YR-206NAV, YR-208NAV, YR-210NAV	301V~600V	3320V, 5s	2000V, 1min	Not indicated	
		Rectifier		Combined with VT	2210V, 5s	2000V, 1min	Indicated	
			YR-8NAV, YR-10NAV, YR-12NAV	5~600V	3320V, 5s	2000V, 1min	Indicated	
			LR-80NAV, LR-110NAV	Combined with VT	2210V, 5s	2000V, 1min	Indicated	
			YP-206NW, YP-208NW, YP-210NW	1P2W: 110~220V	2210V, 5s	2000V, 1min	Indicated	
Nattmeters			YP-8NW, YP-10NW, YP-12NW	1P3W: 100/200V	2210V, 5s	2000V, 1min	Indicated	
vauneters			LP-80NW, LP-110NW	3P3W: 110~220V	2210V, 5s	2000V, 1min	Indicated	
				3P4W:110/√3/110~220/380V	2590V, 5s	2000V, 1min	Indicated	
(ormatora			YP-206NVAR, YP-208NVAR YP-210NVAR	3P3W: 110~220V	2210V, 5s	2000V, 1min	Indicated	
Varmeters			YP-8NVAR, YP-10NVAR, YP-12NVAR LP-80NVAR, LP-110NVAR	3P4W: 110/√3/110~110/190V	2210V, 5s	2000V, 1min	Indicated	
		Balanced circuits	YP-206NPF, YP-208NPF, YP-210NPF YP-8NPF, YP-10NPF, YP-12NPF LP-80NPF, LP-110NPF	3P3W: 110~220V	2210V, 5s	2000V, 1min	Indicated	
Power factor	meters	Unbalanced	YP-206NPFU, YP-208NPFU YP-210NPFU	3P3W: 110~220V	2210V, 5s	2000V, 1min	Indicated	
		loads	YP-8NPFU, YP-10NPFU, YP-12NPFU LP-80NPFU, LP-110NPFU	3P4W: 110/√3/110~110/190V	2210V, 5s	2000V, 1min	Indicated	
Frequency m	eters	_	YP-206NF, YP-208NF, YP-210NF YP-8NF, YP-10NF, YP-12NF LP-80NF, LP-110NF	110-220V	2210V, 5s	2000V, 1min	Indicated	
DC input		Current input	YM-206NRI, YM-208NRI, YM-210NRI YM-8NRI, YM-10NRI, YM-12NRI LM-80NRI, LM-110NRI	300V or less	2210V, 5s	2000V, 1min	Indicated	
		Voltage input	YM-206NRI, YM-208NRI, YM-210NRI YM-8NRI, YM-10NRI, YM-12NRI LM-80NRI, LM-110NRI	1~300V	2210V, 5s	2000V, 1min	Indicated	
ndicators	AC input	Current input	YR-206NRI, YR-208NRI, YR-210NRI YR-8NRI, YR-10NRI, YR-12NRI LR-80NRI, LR-110NRI	300V or less	2210V, 5s	2000V, 1min	Indicated	
AC input Voltage in		Voltage input	YR-206NRI, YR-208NRI, YR-210NRI YR-8NRI, YR-10NRI, YR-12NRI LR-80NRI, LR-110NRI	5~300V	2210V, 5s	2000V, 1min	Indicated	

JIS Mark

	Indicator type		Model name		Operating circuit voltage or maximum rating		Note 2 JIS voltage test	JIS mark indication	
Indicators with	changeover	AC ammeters	YR-8UNAA, YR-10UNAA, YR-12UNAA	600V	or less	3320V, 5s	2000V, 1min	Indicated	
switches AC voltmeters		AC voltmeters	YR-8UNAV, YR-10UNAV, YR-12UNAV	150	~600V	3320V, 5s	2000V, 1min	Indicated	
		AC ammeters	LB-8ZNAA	150V	or less	2210V, 5s	2000V, 1min	Not indicated	
			LB-11ZNAA, LB-11ZRNAA	300V	or less	2210V, 5s	2000V, 1min	Indicated	
		AC voltmeters	LB-8ZNAV	1	50V	2210V, 5s	2000V, 1min	Not indicated	
		AO VOILINELEIS	LB-11ZNAV, LB-11YRNAV	1	50V	2210V, 5s	2000V, 1min	Indicated	
Demand meter	ſS		LB-11ZNW, LB-11ZRNW, LB-11YNW	1P2W:	110~200V	2210V, 5s	2000V, 1min	Indicated	
		Wattmeters	LB-11YRNW	3P3W:	110~220V	2210V, 5s	2000V, 1min	Indicated	
				3P4W:110/√3	3/110~220/380V	2590V, 5s	2000V, 1min	Indicated	
		Receiving indicators	LB-11ZNRI, LB-11ZRNRI, LB-11YNRI LB-11YRNRI	300V	or less	2210V, 5s	2000V, 1min	Indicated	
Demand meter	relays	AC ammeters	LB-11ZRMNAA	300V	or less	2210V, 5s	2000V, 1min	Not indicated	
			YM-210MRNDA, YM-210MRHNDA	0001/	Exterior	2210V, 5s	2000V, 1min		
	DC ammeters		LM-11MRNDA, LM-11MRHNDA	300V or less	Between input and output	1200V, 1min	1200V, 1min	Not indicated	
				4 00014	Exterior	2210V, 5s	2000V, 1min		
			YM-210MRNDV, YM-210MRHNDV	1~300V	Between input and output	1200V, 1min	1200V, 1min	Not indicated	
	DC voltmeters		LM-11MRNDV, LM-11MRHNDV	004 50014	Exterior	3110V, 5s	2000V, 1min		
				301~500V	Between input and output	1200V, 1min	1200V, 1min	Not indicated	
			YR-210MRNAA, YR-210MRHNAA	0001/	Exterior	2210V, 5s	2000V, 1min	N	
	AC ammeters		LR-11MRNAA, LR-11MRHNAA	300V or less	Between input and output	1200V, 1min	1200V, 1min	Not indicated	
			YR-210MRNAV, YR-210MRHNAV		Exterior	2210V, 5s	2000V, 1min		
	AC voltmeters		LR-11MRNAV, LR-11MRHNAV	10~300V	Between input and output	1200V, 1min	1200V, 1min	Not indicated	
					Exterior	2210V, 5s	2000V, 1min		
				1P2W: 110~220V	Between input and output	1200V, 1min	1200V, 1min	Not indicated	
			YM-210MRNW, YM-210MRHNW		Exterior	2210V, 5s	2000V, 1min		
	Wattmeters			3P3W: 110~220V			-	Not indicated	
			LM-11MRNW, LM-11MRHNW	0041410/ (0/110	Between input and output	1200V, 1min	1200V, 1min		
				3P4W:110/√3/110	Exterior	2590V, 5s	2000V, 1min	Not indicated	
Aeter relays				~220/380V	Between input and output	1200V, 1min	1200V, 1min		
, i				3P3W: 110~220V	Exterior	2210V, 5s	2000V, 1min	Not indicated	
	Varmeters		YM-210MRNVAR, YM-210MRHNVAR		Between input and output	1200V, 1min	1200V, 1min		
			LM-11MRNVAR, LM-11MRHNVAR	3P4W:110/√3/110	Exterior	2210V, 5s	2000V, 1min	Not indicated	
				~110/190V	Between input and output	1200V, 1min	1200V, 1min	Not indicated	
			YM-210MRNPF, YM-210MRHNPF	3P3W: 110~220V	Exterior	2210V, 5s	2000V, 1min		
			LM-11MRNPF, LM-11MRHNPF		Extend	22100,00		Not indicated	
	Power factor m	otors	YM-210MRNPFU, YM-210MRHNPFU	3P3W: 110~220V	Between input	1200V, 1min	1200V, 1min	Not indicated	
	Fower lactor li	leters	LM-11MRNPFU, LM-11MRHNPFU		and output	and output			
			YM-210MRNPFU, YM-210MRHNPFU	3P4W:110/√3/110	Exterior	2210V, 5s	2000V, 1min	Not indicated	
			LM-11MRNPFU, LM-11MRHNPFU	~110/190V	Between input and output	1200V, 1min	1200V, 1min		
	_		YM-210MRNF, YM-210MRHNF		Exterior	2210V, 5s	2000V, 1min		
	Frequency me	ters	LM-11MRNF, LM-11MRHNF	110~220V	Between input and output	1200V, 1min	1200V, 1min	Not indicated	
		Power supply	YM-210MRNRI, YM-210MRHNRI		Exterior	2210V, 5s	2000V, 1min		
	Receiving	input	LM-11MRNRI, LM-11MRHNRI	300V or less	Between input and output	1200V, 1min	1200V, 1min	Not indicated	
	indicators	Voltage	YM-210MRNRI, YM-210MRHNRI		Exterior	2210V, 5s	2000V, 1min		
		input	LM-11MRNRI, LM-11MRHNRI	1~300V	Between input and output	1200V, 1min	1200V, 1min	Not indicated	
		DC ammeters	LM-11ZNDA, LM-11YNDA	3001/	or less	2210V, 5s	2000V, 1min	Not indicated	
ndicators with	maximum and	AC ammeters	LM-11ZNAA, LM-11YNAA		or less	2210V, 5s	2000V, 1min	Not indicated	
ninimum need		AC Voltmeters	LM-11ZNAA, LM-11YNAA		~300V	2210V, 5s	2000V, 1min	Not indicated	
			LM-11ZNRI, LM-11YNRI		or less	2210V, 5s 2210V, 5s	2000V, 1min	Not indicated	
arth lookage	dotoctoro	necenting indicators	LM-112NRI, LM-11YNRI LM-11NGD		~150V	2210V, 58 2210V, 5s	2000V, 1min 2000V, 1min	Not indicated	
Earth-leakage				-				-	
Synchroscopes	>		LI-11NSY	110	~220V	2210V, 5s	2000V, 1min	Indicated	
Dual-element i	ndicators		LM-11NE	10V or less	Exterior Between terminals	2210V, 5s 50V, 1min	2000V, 1min 50V, 1min	Indicated	
			FM-210SN, FM-213SN, FM-215SN FM-217SN	300V	or less	2210V, 5s	2000V, 1min	Indicated	
		Current input	FM-210DN, FM-213DN, FM-215DN		Exterior	2210V, 5s	2000V, 1min		
			FM-217DN, FM-213DN, FM-213DN	10V or less	Between terminals	500V, 1min	500V, 1min	Indicated	
	DC indicators				Derween reminals	500v, imm	500v, imin		
Bar-shaped			FM-210SN, FM-213SN, FM-215SN	1~	300V	2210V, 5s	2000V, 1min	Indicated	
ndicators		Voltage input	FM-217SN		F · · ·	001011 -	000014 / .		
			FM-210DN, FM-213DN, FM-215DN	1~10V	Exterior	2210V, 5s	2000V, 1min	Indicated	
			FM-217DN		Between terminals	500V, 1min	500V, 1min		
		Current input	FR-210SN, FR-213SN, FR-215SN	300/	or less	2210V, 5s	2000V, 1min	Indicated	
	AC indicators		FR-217SN			, 00			
AC indicators			FR-210SN, FR-213SN, FR-215SN				1	1	
		Voltage input	111-2100N, 111-2100N, 111-2100N	E .	300V	2210V, 5s	2000V, 1min	Indicated	

Note 1. The factory-tested voltages are the values for the voltage test at the time of shipment. (The test may be performed at a value higher than the standard value.) **Note 2.** Values in JIS C 1102-1 to 7 (1997 version). **Note 3.** In some cases, special specification models (special grade, foreign standards) may not have a JIS mark.

Note 4. Models shown in shaded areas do not have the JIS mark.

Mechanical Indicators

Common Specifications

Common standard specifications

Standards	Direct-acting electrical indicators JIS C 1102-2, JIS C 1102-3, JIS C 1102-4, JIS C 1102-5, JIS C 1102-7
Accuracy (grade)	Class 1.5 or 2.5 (frequency meters: class 0.5 or 1; power factor meters: class 5, synchroscope: class 5)
Usage temperature range	-5°C to 50°C (reference temperature: 23°C)
Usage humidity range	At a relative humidity of 30% to 70%, there are no adverse effects on indications.
Mounting attitude	Vertical (the scale plate is vertical with respect to a horizontal surface)
Scale plate	Background color: white
Cover	Acrylic resin (with antistatic treatment applied)
Case	Steel plate or molded product
Input signal peak-to-rms ratio	Sine wave $(\sqrt{2})$
Measurement category	CAT III (category of measurement performed inside a building facility)
Operating environment	2 (non-conductive pollution only)
pollution rating	
Installation altitude	2,000m or less
Usage location	Indoors
Mounting panel	Metal panel
Voltage test	Rated voltage 300V: 2210V for 5s; rated voltage 600V: 3320V for 5sNote 1 (between electrical circuit and outer casing)
Insulation test	$10M\Omega$ or more at a test voltage of 500V (between electrical circuit and outer casing)
Storage temperature	-20°C to 60°C

Note 1. Refer to the Reference Chart for Test Voltages and JIS Mark on p.25/26 for information regarding the circuit voltage ranges of respective models and applicable voltage test values.

Covers

Cover specification	Classification	Y-2N Series	Y-N Series	L-N Series
B design cover (Munsell N 1.5 semi-gloss)	O	20 30 40 50 0 9 A A B Marriero C	A Contraction of the second se	
G design cover (all transparent)	0	A @	Print Color States	
F design cover Note 1 (special color coating)	Δ	A	A man	
Cover with red needle $\begin{pmatrix} can be \\ manufactured for B, \\ G, and F designs \end{pmatrix}$	0		29, 30, 49,50 99, 1, 1, 1, 1, 50 1, 1, 1, 1, 1, 1, 50 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	

Remarks The B design cover is standard specification. The G and F design covers and covers with red needles can be manufactured if required.

Note 1. When ordering the F-design cover, please use F as the cover code and specify the color coating. Munsell 7.5BG 4/1.5 will be used for orders with no color coating specified.

Cover codes

Cover specifications	Without red needle	With red needle
B design	В	BR*1
G design	G	GR
F design	F	FR

Remarks For the Y-N Series, a B cover with two red needles (BRR cover) can be manufactured depending on the model (please inquire for details).

Accessories

Nuts for mounting screws are provided with all models. T-150 and other special accessories are indicated in the specification columns of the respective indicator types.

Mechanical Indicators

Common Specifications

Scale plate components and items indicated

		Scale numeral	Medium Scale lines
			Thin J
		Scale baseline	Scale spacing
	Zor	o scale line	Maximum scale value
	261		
		200	400
	Sca		
			JIS mark
			Logo mark of certification organization
			Logo mark of certification organization
	_	MITSUBISHI • € (1] 3~2E 1.5 ⊥ C/	NT III DUGARANTE
Unit of meas	urement	YP-12NW No. F1008	5 A CT. 50/5 110V VT. 6600/110
Item	Code		Amisusselective: Rated current value, CT ratio
Ampere	А	Model name	Rated voltage value, VT ratio
Volt	v	Serial number	
Watt	w		
Var	var		
	$\cos \phi$ or		
Power factor	$\cos \psi$		
Hertz	Hz		
Prefix			
Mega 10 ⁶	м		Auxiliary symbols
Kilo 10 ³	k		Item Symbol
Milli 10 ⁻³	m		Shunt -
			Serial resistor - R-
/		Type of measurement	Accessory 🗢
Operation pr	inciple	and number of elements / measured Accuracy class	Mounting attitude Measurement category
		i i i i i i i i i i i i i i i i i i i	

Γ

- Thick

Operation principle Item Symbol Permanent magnet/movable coil Image: Colspan="2">Image: Colspan="2" Image: Cols			
Item	Symbol		
magnet/movable	Ω		
	¥°		
Bimetal	\Leftrightarrow		
Electronic device in measurement circuit	Ŕ		
Electronic device in auxiliary circuit	À		
Rectifier	¥		

Item

DC circuit

AC circuit

3-phase AC

circuit Single element

for 3-wire circuit Two elements for unbalanced load

3-wire circuit Two elements for unbalanced load

4-wire circuit

Three elements for unbalanced load 4-wire circuit Symbol

 \sim

3~

3~1E

3~2E

3N~2E

3N~3E

Accuracy class						
Class index	Code					
Class 0.5	0.5					
Class 1	1					
Class 1.5	1.5					
Class 2.5	2.5					
Class 5	5					
Class 1.5 in the case where the base value corresponds to the span	1.5					
Class 2.5 in the case where the base value corresponds to the span	2.5					

3	
Item	Symbol
Instrument used with scale plate set vertically	\perp
Instrument used with scale plate set horizontally	
Instrument used with scale plate set at a position inclined from the horizontal surface (example: 60°)	<u>/60°</u>

Measurement category							
Classification	Code						
Measurement category II	CATⅢ						

Scale plate indications

The following tables show the scales, including numerals, colored lines, bands and colors, used as standard specifications. Red, blue, green and yellow are used for the colored lines/bands.

Remarks (1) See the "Standard Scale Diagrams" on pp.31 to 34 regarding the scale division with respect to the maximum scale value. (2) Special scales can also be manufactured.

1a. Y-206N ordinary scale indicators

1b. Y-206N expanded scale indicators

Maximum		Number	Single	Maximum		Number	Single
scale	Scale specification	of	space	scale	Scale specification	of	space
value		divisions	reading	value		divisions	reading
1 10 100 1000	0 2 4 6 8 10 I I I I I I I I I	10	0.1 1 10 100	1 10 100 1000	0 5 10 20 30 I <u>1</u> 1 I 1 1 I I	10	0.1 1 10 100
1.2 12 120 1200	$ \begin{bmatrix} 0 & 3 & 6 & 9 & 12 \\ \hline I & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix} $	12	0.1 1 10 100	1.2 12 120 1200	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12	0.1 1 10 100
1.5 15 150 1500	0 5 10 15 I <u>1</u> 1 1 I 1 1 1 I 1 1 1 I	15	0.1 1 10 100	1.5 15 150 1500	0 5 10 15 30 45 <u>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </u>	15	0.1 1 10 100
2 20 200 2000	0 5 10 15 20 <u> _ + + + + </u> + + + + + + + + + + +	20	0.1 1 10 100	2 20 200 2000	0 10 20 40 60 <u>I I</u> I I I I I	20	0.1 1 10 100
2.5 25 250 2500	0 5 10 15 20 25 <u> </u>	25	0.1 1 10 100	2.5 25 250 2500	0 5 10 15 20 25 50 75 <u>1</u>	25	0.1 1 10 100
3 30 300 3000	0 10 20 30 I <u>1</u> 1 I 1 1 1 I 1 1 1 I	15	0.2 20 200	3 30 300 3000	0 10 20 30 60 90 I <u>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</u>	15	0.2 20 200
4 40 400 4000	0 10 20 30 40 <u>1 1 1 1</u> 1 1 1 1 1 1 1 1 1 1 1 1 1	20	0.2 20 200	4 40 400 4000	0 10 20 30 40 80 120 I 1 I 1 I 1 I I	8	0.5 50 500
4.5 45 450 4500	0 10 20 30 40 45 <u>1 1 1 1 1</u> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	22.5	0.2 20 200	_		_	—
5 50 500 5000	0 10 20 30 40 50 I <u>I</u> I I I I I I I I	10	0.5 5 50 500	5 50 500 5000	0 10 20 30 40 50 100 150 I <u>I</u> I I I I I I I I	10	0.5 5 50 500
6 60 600 6000	0 20 40 60 <u>I i I i I i I i I i I</u>	12	0.5 5 50 500	6 60 600 6000	0 20 40 60 120 180 <u>I I I I I I I </u>	12	0.5 5 50 500
7.5 75 750 7500	0 20 40 60 75 I <u>1</u> 1 1 I 1 1 I 1 1 I 1 1	15	0.5 5 50 500	7.5 75 750 7500	0 25 50 75 150 225 I <u></u> I I I I I	15	0.5 5 50 500
8 80 800 8000	0 20 40 60 80 <u>I I I I</u> I I I I I I I I I I I I	16	0.5 5 50 500	8 80 800 8000	0 20 40 60 80 160 240 <u>I - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - </u>	16	0.5 5 50 500
9 90 900 9000	0 30 60 90 <u> - 1 - 1</u> - 1 - 1 - 1 - 1 - 1 - 1	18	0.5 5 50 500	9 90 900 9000	0 30 60 90 180 270 I I I I I I I I	9	1 10 100 1000

Remarks The ranges underlined in the Scale specification column of the table above are omitted for indicators where the interval between scale marks are very small close to the zero point (e.g., an indicator with a movable iron core).

2a. Y-208N and Y-210N ordinary scale indicators 2b. Y-208N and Y-210N expanded scale indicators

Maximum scale	Scale specification	Number of	Single space	Maximum scale	Scale specification	Number of	Single space
value 1 10 100 1000	0 2 4 6 8 10 I <u>+ I +</u> I + I + I + I + I + I + I + I + I	divisions 20	reading 0.05 0.5 5 50	value 1 10 100 1000	0 5 10 20 30 I <u>- 1 - 1 - 1</u> - 1 - 1 I - 1 - 1 - 1 I I I I I I I I I	divisions 20	reading 0.05 0.5 5 50
1.2 12 120 1200	0 3 6 9 12 <u>1 </u>	24	0.05 0.5 5 50	1.2 12 120 1200	0 3 6 9 12 24 36 1 <u>1 1 1</u> 1 1 1 1 1 1 1	24	0.05 0.5 5 50
1.5 15 150 1500	0 5 10 15 I 1 1 1 I 1 1 1 I 1 1 1 I	15	0.1 1 10 100	1.5 15 150 1500	0 5 10 15 30 45 I I I I I	15	0.1 1 10 100
2 20 200 2000	0 5 10 15 20 <u>1 1 1 1 1</u> 1 1 1 1 1 1 1 1 1 1 1 1	20	0.1 1 10 100	2 20 200 2000	0 10 20 40 60 I <u> I</u> I I I I I	20	0.1 1 10 100
2.5 25 250 2500	0 5 10 15 20 25 1 <u></u>	25	0.1 1 10 100	2.5 25 250 2500	0 5 10 15 20 25 50 75 I I I I I I I I	25	0.1 1 10 100
3 30 300 3000	0 10 20 30 1 1 1 1 1 1	30	0.1 1 10 100	3 30 300 3000	0 10 20 30 60 90 I I I I I I	15	0.2 20 200
4 40 400 4000	0 10 20 30 40 <u>1 1 1 1 1</u> 1 1 1 1 1 1 1 1 1 1 1 1	20	0.2 2 20 200	4 40 400 4000	0 10 20 30 40 80 120 1 <u></u>	20	0.2 20 200
4.5 45 450 4500	0 10 20 30 40 45 <u>1 + + + +</u> + + + + + + + + + + + + + + +	22.5	0.2 2 20 200	_		_	_
5 50 500 5000	0 10 20 30 40 50 <u>1 1 1 1</u> 1 1 1 1 1 1 1 1 1 1 1 1	25	0.2 2 20 200	5 50 500 5000	0 10 20 30 40 50 100 150 1 I I I I I I I	25	0.2 20 200
6 60 600 6000	0 20 40 60 I <u></u> I I I I I I	30	0.2 2 20 200	6 60 600 6000	0 20 40 60 120 180 I <u>I</u> I I I I I I I I I	12	0.5 5 50 500
7.5 75 750 7500	0 20 40 60 75 <u>I</u> 1 1 I 1 1 I 1 I 1 I 1 I 1	15	0.5 5 50 500	7.5 75 750 7500	0 25 50 75 150 225 	15	0.5 5 50 500
8 80 800 8000	0 20 40 60 80 <u>1 1 1 1</u> 1 1 1 1 1 1 1 1 1	16	0.5 5 50 500	8 80 800 8000	0 20 40 60 80 160 240 I _ I + I + I + I + I + I + I I I I	16	0.5 5 50 500
9 90 900 9000	0 30 60 90 <u>I I I I I I I I I I I I I I I I</u>	18	0.5 5 50 500	9 90 900 9000	0 30 60 90 180 270 I <u> </u> I I	18	0.5 5 50 500

Remarks The ranges underlined in the Scale specification column of the table above are omitted for indicators where the interval between scale marks are very small close to the zero point (e.g., an indicator with a movable iron core).

Maximum		Number	Single	Maximum		Number	Single
scale	Scale specification	of	space	scale	Scale specification	of	space
value		divisions	reading	value		divisions	reading
1 10 100 1000	0 2 4 6 8 10 	20	0.05 0.5 5 50	1 10 100 1000	0 5 10 20 30 I	20	0.05 0.5 5 50
1.2 12 120 1200	$ \begin{bmatrix} 0 & 3 & 6 & 9 & 12 \\ \hline & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$	24	0.05 0.5 5 50	1.2 12 120 1200	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	24	0.05 0.5 5 50
1.5 15 150 1500	0 5 10 15 I I I I I I I I I I I	15	0.1 1 10 100	1.5 15 150 1500	0 5 10 15 30 45 I + + + + I + + + + I I I	15	0.1 1 10 100
2 20 200 2000	0 5 10 15 20 <u></u>	20	0.1 1 10 100	2 20 200 2000		20	0.1 1 10 100
2.5 25 250 2500	0 5 10 15 20 25 <u></u>	25	0.1 1 10 100	2.5 25 250 2500	0 5 10 15 20 25 50 75 	25	0.1 1 10 100
3 30 300 3000	0 10 20 30 	30	0.1 1 10 100	3 30 300 3000	0 10 20 30 60 90 1 + + + + 1 + + + 1 1 1	15	0.2 2 20 200
4 40 400 4000	0 10 20 30 40 	40	0.1 1 10 100	4 40 400 4000	0 10 20 30 40 80 120 <u>1</u>	20	0.2 2 20 200
4.5 45 450 4500	0 10 20 30 40 45 <u>1 1</u>	22.5	0.2 20 200	_		_	—
5 50 500 5000	0 10 20 30 40 50 <u></u>	25	0.2 20 200	5 50 500 5000		25	0.2 2 20 200
6 60 600 6000	0 20 40 60 <u> </u>	30	0.2 2 20 200	6 60 600 6000		12	0.5 5 50 500
7.5 75 750 7500	0 20 40 60 75 <u> </u>	15	0.5 5 50 500	7.5 75 750 7500	0 25 50 75 150 225 I + + + + I + + + + I I I	15	0.5 5 50 500
8 80 800 8000		16	0.5 5 50 500	8 80 800 8000	0 20 40 60 80 160 240 	16	0.5 5 50 500
9 90 900 9000	0 30 60 90 	18	0.5 5 50 500	9 90 900 9000	0 30 60 90 180 270 	18	0.5 10 100 1000

3a. Y-8N and Y-10N ordinary scale indicators

3b. Y-8N and Y-10N expanded scale indicators

Remarks The ranges underlined in the Scale specification column of the table above are omitted for indicators where the interval between scale marks are very small close to the zero point (e.g., an indicator with a movable iron core).

4a. Y-12N ordinary scale indicators

4b. Y-12N expanded scale indicators

Maximum		Number	Single	Maximum		Number	Single
scale	Scale specification	of	space	scale	Scale specification	of	space
value	Ocale Specification	divisions	reading	value	Ocale specification	divisions	reading
1 10 100 1000		50	0.02 0.2 2 20	1 10 100 1000		20	0.05 0.5 5 50
1.2 12 120 1200	$\begin{bmatrix} 0 & 3 & 6 & 9 & 12 \\ \hline & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$	24	0.05 0.5 5 50	1.2 12 120 1200	0 3 6 9 12 24 36 <u>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </u>	24	0.05 0.5 5 50
1.5 15 150 1500	$\begin{bmatrix} 0 & 5 & 10 & 15 \\ \hline & & & \\ \hline \\ \hline$	30	0.05 0.5 5 50	1.5 15 150 1500	0 5 10 15 30 45 1 + + + + 1 + + + + 1 1	15	0.1 1 10 100
2 20 200 2000	0 5 10 15 20 	40	0.05 0.5 5 50	2 20 200 2000	0 5 10 15 20 40 60 	20	0.1 1 10 100
2.5 25 250 2500	0 5 10 15 20 25 <u></u>	25	0.1 1 10 100	2.5 25 250 2500	0 5 10 15 20 25 50 75 	25	0.1 1 10 100
3 30 300 3000	0 10 20 30 <u>1</u>	30	0.1 1 10 100	3 30 300 3000	0 10 20 30 60 90 	15	0.2 20 200
4 40 400 4000	0 10 20 30 40 	40	0.1 1 10 100	4 40 400 4000	0 10 20 30 40 80 120 I I I I I I I	20	0.2 20 200
4.5 45 450 4500	0 10 20 30 40 45 	45	0.1 1 10 100	—		_	—
5 50 500 5000	0 10 20 30 40 50 [50	0.1 1 10 100	5 50 500 5000	0 10 20 30 40 50 100 150	25	0.2 20 200
6 60 600 6000	0 20 40 60 <u>1</u>	30	0.2 20 200	6 60 600 6000	0 20 40 60 120 180	30	0.2 2 20 200
7.5 75 750 7500	0 20 40 60 75 	37.5	0.2 20 200	7.5 75 750 7500	0 25 50 75 150 225 	15	0.5 5 50 500
8 80 800 8000	0 20 40 60 80 <u> </u>	40	0.2 20 200	8 80 800 8000	0 20 40 60 80 160 240 	16	0.5 5 50 500
9 90 900 9000	0 30 60 90 <u> 1</u>	45	0.2 20 200	9 90 900 9000	0 30 60 90 180 270 <u></u> <u></u> <u></u> <u></u>	18	0.5 5 50 500

Remarks The ranges underlined in the Scale specification column of the table above are omitted for indicators where the interval between scale marks are very small close to the zero point (e.g., an indicator with a movable iron core).

5a. L-110N ordinary scale indicators

5b. L-110N expanded scale indicators

Maximum		Number	Single	Maximum		Number	Single
scale	Scale specification	of	space	scale	Scale specification	of	space
value	Scale specification	divisions	reading	value	Scale specification	divisions	reading
1 10 100 1000	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	50	0.02 0.2 2 20	1 10 100 1000	0 5 10 20 30	20	0.05 0.5 5 50
1.2 12 120 1200	$ \begin{array}{c} \hline \\ \hline \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	24	0.05 0.5 5 50	1.2 12 120 1200	<th< <="" td=""><td>24</td><td>0.05 0.5 5 50</td></th<>	24	0.05 0.5 5 50
1.5 15 150 1500	0 5 10 15	30	0.05 0.5 5 50	1.5 15 150 1500	I I	30	0.05 0.5 5 50
2 20 200 2000	0 5 10 15 20	40	0.05 0.5 5 50	20 200 2000		40	0.05 0.5 5 50
2.5 25 250 2500	0 5 10 15 20 25	25	0.1 1 10 100	2.5 25 250 2500	Image: Constraint of the second sec	25	0.1 1 10 100
3 30 300 3000	0 10 20 30	30	0.1 1 10 100	3 30 300 3000	0 10 20 30 60 90	30	0.1 1 10 100
4 40 400 4000	0 10 20 30 40	40	0.1 1 10 100	4 40 400 4000	0 10 20 30 40 80 120	20	0.2 20 200
4.5 45 450 4500	0 10 20 30 40 45	45	0.1 1 10 100	_		_	_
5 50 500 5000	0 10 20 30 40 50	50	0.1 1 10 100	5 50 500 5000	0 10 20 30 40 50 100 150	25	0.2 20 200
6 60 600 6000	0 20 40 60	30	0.2 2 20 200	6 60 600 6000	0 20 40 60 120 180	30	0.2 2 20 200
7.5 75 750 7500	0 20 40 60 75	37.5	0.2 20 200	7.5 75 750 7500	0 25 50 75 150 225	15	0.5 5 50 500
8 80 800 8000	0 20 40 60 80	40	0.2 20 200	8 80 800 8000		40	0.2 2 20 200
9 90 900 9000	UUUUUUU	45	0.2 2 20 200	9 90 900 9000	Image: Constraint of the second sec	18	0.5 5 50 500

Remarks The ranges underlined in the Scale specification column of the table above are omitted for indicators where the interval between scale marks are very small close to the zero point (e.g., an indicator with a movable iron core).

6a. L-80N ordinary scale indicators

6b. L-80N expanded scale indicators

Maximum		Number	Single	Maximum		Number	Single
scale	Scale specification	of	space	scale	Scale specification	of	space
value	ocale speemeation	divisions	reading	value	obaic specification	divisions	reading
1 10 100 1000	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	50	0.02 0.2 2 20	1 10 100 1000	Image: Description Image:	20	0.05 0.5 5 50
1.2 12 120 1200	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	24	0.05 0.5 5 50	1.2 12 120 1200	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	24	0.05 0.5 5 50
1.5 15 150 1500	0 5 10 15	30	0.05 0.5 5 50	1.5 15 150 1500	0 5 10 15 30 45	30	0.05 0.5 5 50
2 20 200 2000	0 5 10 15 20	40	0.05 0.5 5 50	2 20 200 2000	International Interna International International<	40	0.05 0.5 5 50
2.5 25 250 2500		25	0.1 1 10 100	2.5 25 250 2500	0 5 10 15 20 25 50 75	25	0.1 1 10 100
3 30 300 3000	0 10 20 30	30	0.1 1 10 100	3 30 300 3000	0 10 20 30 60 90	30	0.1 1 10 100
4 40 400 4000	U 0 10 20 30 40	40	0.1 1 10 100	4 40 400 4000		20	0.2 20 200
4.5 45 450 4500	0 10 20 30 40 45	22.5	0.2 20 200	_		-	-
5 50 500 5000	0 10 20 30 40 50	25	0.2 2 20 200	5 50 500 5000		25	0.2 20 200
6 60 600 6000	0 20 40 60	30	0.2 20 200	6 60 600 6000	 LLLLLLLL 0 20 40 60 120 180	30	0.2 2 20 200
7.5 75 750 7500		37.5	0.2 2 20 200	7.5 75 750 7500	 0 25 50 75 150 225	15	0.5 5 50 500
8 80 800 8000	0 20 40 60 80	40	0.2 2 20 200	8 80 800 8000		40	0.2 2 20 200
9 90 900 9000	UUUUUUU	45	0.2 2 20 200	9 90 900 9000	0 30 60 90 180 270	18	0.5 5 50 500

Remarks The ranges underlined in the Scale specification column of the table above are omitted for indicators where the interval between scale marks are very small close to the zero point (e.g., an indicator with a movable iron core).

7a. F-210N ordinary scale indicators (Class 2.5)

Maximum scale value	1 10 100 1000	1.2 12 120 1200	1.5 15 150 1500	2 20 200 2000	2.5 25 250 2500	3 30 300 3000	4 40 400 4000	4.5 45 450 4500	5 50 500 5000	6 60 600 6000	7.5 75 750 7500	8 80 800 8000	9 90 900 9000
Scale specification								45 40 30 20 10 0			- 75 - 60 - 40 - 20 - 20 - 0	80 	90
Number of divisions	20	24	30	20	25	30	20	22.5	25	30	15	16	18
Single spacing reading	0.05 0.5 5 50	0.05 0.5 5 50	0.05 0.5 5 50	0.1 1 10 100	0.1 1 10 100	0.1 1 10 100	0.2 2 20 200	0.2 2 20 200	0.2 2 20 200	0.2 2 20 200	0.5 5 50 500	0.5 5 50 500	0.5 5 50 500

8a. F-213N, F-215N, and F217N ordinary scale indicators

Maximum scale value	1 10 100 1000	1.2 12 120 1200	1.5 15 150 1500	2 20 200 2000	2.5 25 250 2500	3 30 300 3000	4 40 400 4000	4.5 45 450 4500	5 50 500 5000	6 60 600	7.5 75 750 7500	8 80 800 8000	9 90 900 9000
Scale specification				20 11 15 10 10 10 10 11 10 11 10 11 10	25 20 15 15 10 15 5 0				50 40 30 20 10 10				90 60 11 30 11 11 11 11 11 11 11 11 11 1
Number of divisions	50	24	30	40	50	30	40	45	50	30	37.5	40	45
Single spacing reading	0.02 0.2 2 20	0.05 0.5 5 50	0.05 0.5 5 50	0.05 0.5 5 50	0.05 0.5 5 50	0.1 1 10 100	0.1 1 10 100	0.1 1 10 100	0.1 1 10 100	0.2 2 20 200	0.2 2 20 200	0.2 2 20 200	0.2 2 20 200

Rectangular indicators (Y-2N Series)

•Depth dimension details

Indicator type		Y-20	06N		Y-20	08N		Y-210N			
			Type name	A dimension	B dimension	Type name	A dimension	B dimension	Type name	A dimension	B dimension
DC	Ammeters		YM-206NDA	43	_	YM-208NDA	43	—	YM-210NDA	43	_
		neters	YM-206NDV	43	_	YM-208NDV	43	—	YM-210NDV	43	_
	Ammeters		YS-206NAA	43	—	YS-208NAA	43	—	YS-210NAA	43	—
		Uniform scale	YR-206NAA	43	44	YR-208NAA	43	—	YR-210NAA	43	—
	Voltmeters		YS-206NAV	43	_	YS-208NAV	43	45	YS-210NAV	43	45
		Uniform scale	YR-206NAV	43	_	YR-208NAV	43	—	YR-210NAV	43	_
AC	Wattn	neters	YP-206NW	43	_	YP-208NW	43	—	YP-210NW	43	_
	Varm	neters	YP-206NVAR	43	—	YP-208NVAR	43	—	YP-210NVAR	43	—
	Power-factor	Balanced	YP-206NPF	43	_	YP-208NPF	43	—	YP-210NPF	43	_
	meters	Unbalanced	YP-206NPFU	43	_	YP-208NPFU	43	—	YP-210NPFU	43	-
	Frequency meters		YP-206NF	83		YP-208NF	83	_	YP-210NF	83	
	Receiving	DC indicators	YM-206NRI	43	_	YM-208NRI	43	_	YM-210NRI	43	_
	indicators	AC indicators	YR-206NRI	43	_	YR-208NRI	43	—	YR-210NRI	43	_

Rectangular indicators (Y-N Series)

•Depth dimension details

	Indicator	type	Y-8	ЗN		Y-1	0N		Y-1	2N	
	mulcator	type	Type name	A dimension	B dimension	Type name	A dimension	B dimension	Type name	A dimension	B dimension
DC	Amm	eters	YM-8NDA	41	—	YM-10NDA	41	_	YM-12NDA	50	—
	Voltm	neters	YM-8NDV	41	—	YM-10NDV	41	—	YM-12NDV	50	—
	Amm	eters	YS-8NAA	41	—	YS-10NAA	41	_	YS-12NAA	50	—
		Uniform scale	YR-8NAA	41	—	YR-10NAA	41	_	YR-12NAA	50	—
	Voltm	neters	YS-8NAV	41	43	YS-10NAV	41	43	YS-12NAV	50	85
		Uniform scale	YR-8NAV	41	—	YR-10NAV	41	_	YR-12NAV	50	_
AC	Wattn	neters	YP-8NW	41	—	YP-10NW	41	_	YP-12NW	100	_
	Varm	eters	YP-8NVAR	41	—	YP-10NVAR	41	—	YP-12NVAR	100	—
	Power-factor	Balanced	YP-8NPF	81	—	YP-10NPF	81	—	YP-12NPF	50 Note	—
	meters	Unbalanced	YP-8NPFU	41	—	YP-10NPFU	41	_	YP-12NPFU	100	_
	Frequenc	cy meters	YP-8NF	81	—	YP-10NF	81	—	YP-12NF	50	_
	Receiving	DC indicators	YM-8NRI	41	—	YM-10NRI	41	—	YM-12NRI	50	—
	indicators	AC indicators	YR-8NRI	41	—	YR-10NRI	41	—	YR-12NRI	50	—

Note. 100mm in the case of a model for 1-phase 2-wire systems.

А

mensio

В

mensio

_

Wide-angle indicators (L-N Series)

FIG. 2 L-110N

Overall Connection Examples

1. 1-phase, 3-wire circuit

Overall Connection Examples

2. 3-phase, 3-wire circuit (2CT)

3. 3-phase, 3-wire circuit (3CT)

Overall Connection Examples

4. 3-phase, 4-wire circuit

Note 1. Grounding of the secondary sides of the instrument voltage transformer and the current transformer is not necessary in a low voltage circuit.

YM-8NDA

Specifications

YM-206NDA

Connection diagrams

0

Fig. 1 DC ammeter (direct) load

LM-110NDA

	<u> </u>	_				Rectangula	r indicators			Wide-angl	e indicators	
					Y-2N Series			Y-N Series		L-N S	Series	
Siz	e (width >	< height)	mm	64×60	85×75	100×85	82×82	102×102	122×122	80×80	110×110	
Mo	del name			YM-206NDA	YM-208NDA	YM-210NDA	YM-8NDA	YM-10NDA	YM-12NDA	LM-80NDA	LM-110NDA	
Ope	eration pr	inciple		Movable coil				Movable coil	_	Movable coil		
Acc	curacy (gr	ade)		2.5			2	.5	1.5	2.5	1.5	
Sca	ale length		(mm)	55	70	85	70	90	100	124	175	
We	ight		(kg)	0.07	0.1	0.1	0.1	0.15	0.3	0.3	0.4	
value period						Int	ternal resistance	(Ω) or voltage dr	ор			
<u>υ</u> 100μΑ Δ 2000Ω					200	Ω0Ω	5000Ω	-	_			
200µA △			1200Ω			1200Ω		5000Ω	-	_		
ass				1000Ω			1000Ω		1550Ω	92	0Ω	
d Cl	500μΑ Δ			730Ω			73	0Ω	780Ω	58	0Ω	
erio	Note	1mA	0	200Ω			20	0Ω	250Ω	18	0Ω	
ry p	Direct indicator Note 1	3mA	0		70Ω		70	70Ω 85Ω		6	Ω	
live	dice	5mA	0		8Ω		8Ω		50Ω	8	Ω	
d de	ti.	10mA	0		2Ω		2Ω 25Ω		25Ω			
ano	Direc	20mA	0		0.8Ω		0.8Ω 0.8Ω					
Indicator rating and delivery period classification	Singlet 50, 100mA 200, 500mA 1, 2, 5, 7.5A 10, 15, 20, 30A						60mV		60	mV		
	Combined with shunt 1A~7500A \triangle 60mV, 100mV Not (consumption current: approx. 20mA)			Note 2 ox. 20mA)	60mV, 100mV Note 2 (consumption current: approx. 20mA)			2 60mV, 100mV Note 2 (consumption current: approx. 5mA)				
	pecial cification	With lead wire adjustment resistor	0	(222011)	Manufacturable		Manufacturable			Manufacturable		
Pag	e with oute	er dimensions	drawing		35		36			37		

Note 1. The operating circuit voltage is 300V or less with the Y-2N Series, and 600V or less with the Y-N Series and L-N Series. Delive Note 2. In the case of combined use with a shunt, refer to "DC Ammeter Combined with Shunt" on p.44, and specify the lead

es and L-N Series.	Delivery per	iod classific	ation	
es and L-N Series. Delivery period classification Ind specify the lead Symbol Symbol Reference delivery period Immediate delivery Within 20 days		∆Special		
	Symbol	product	product	product
	Reference delivery period	Immediate delivery	Within 20 days	21 to 60 days

Fig. 2 DC ammeter (combined with shunt)

resistance value

<u>م</u>

Load

Shunt

Lead wire with specified

Remarks (1) In the case of a bidirectional deflection indicator, determine the specifications according to the following.

wire thickness and one-way length or round-trip resistance.

- Direct-rating models can be manufactured if the larger of the left and right scales is 30A or less.
- For combined use with a shunt, select a scale so that the sum of the absolute values of the indicator ratings is 60mV or more.

Example: In the case of a shunt with ratings of 100A and 60mV Ammeter scale -50~0~+100A Ammeter rating -30~0~+60mV

- (Sum of absolute values=90mV≥60mV)
- (2) Refer to "Receiving Indicators" on p.67 concerning zerosuppressed indicators.
- (3) Please make sure to read the "Safety Precautions" (pp.5-8) and the "Selection Precautions" (p.9) to assist in selecting the model and use specifications suited to the application.

Ordering method

The items in _____ must be specified.

●Indicator combi	ined with shunt	Shunt rating +	Thickness and length of lead	Number of
Model name	Indicator rating Scale	Cover type required/not required		units
YM-206NDA	60mV 0-200A	B SHT 200A 60m required	nV, lead wire 3.5mm ² 3m, Double scale, colored lines, etc.	10
			With lead wire adjustment resistor	
 Direct indicator 			VR	Number of
Model name	Scale Cover typ			units
YM-206NDA	0-20A B	Double scale, colored lines, etc.		10

Load

DC ammeter combined with shunt

For DC ammeters combined with a shunt, the measured value changes according to the resistance value of the lead wire. Thus, please refer to the following tables and specify the thickness and one-way length or round-trip resistance value of the lead wire connecting the indicator and the shunt.

The lead wire resistance value must be within the "maximum allowable value."

•Table of maximum allowable values of lead wires for DC ammeters combined with shunts

	DC ammeter combined with shun	t	Maximum one-way length (m) in the case of a 2mm ² lead wire (Mitsubishi	Maximum one-way length (m) in the
Model name	Indicator rating (mV)	Maximum allowable resistance value of lead wire (Ω)	Electric standard lead wire)	case of a 3.5mm ² lead wire
	60 or more less than 75	0.72	39	69
YM-206NDA, YM-208NDA	75 or more less than 100	1.55	84	149
YM-210NDA	100 or more less than 150	2.37	128	227
YM-8NDA, YM-10NDA	150 or more	4.02	217	384
	60 or more less than 75	0.40	21	38
YM-12NDA	75 or more less than 100	0.90	48	86
TWI-TZNDA	100 or more less than 150	1.40	70	134
	150 or more	2.40	135	230
	60 or more less than 75	1.00	54	96
LM-80NDA	75 or more less than 100	1.50	80	144
LM-110NDA	100 or more less than 150	2.40	135	230
	150 or more	4.00	217	384

Remarks (1) In the case of a bidirectional deflection indicator, the indicator rating is the sum of the absolute values of the respective ratings.
(2) If a lead wire length exceeding the values in the above table is required, use a lead wire with a large cross-sectional area or use a shunt with a high rated voltage.

• Table of round-trip resistance values according to lead wire thicknesses and one-way lengths

One-way length		F	lound-trip resist	ance value (Ω)	(length: one-way	/)		Lead wire resistance
Cross-sectional area	1m	2m	3m	4m	5m	10m	20m	(Ω/km)
1.25mm ²	0.033	0.066	0.099	0.132	0.165	0.330	0.660	16.5
2mm ²	0.018	0.037	0.055	0.074	0.092	0.184	0.368	9.2
3.5mm ²	0.010	0.021	0.031	0.042	0.052	0.104	0.208	5.2
5.5mm ²	0.007	0.013	0.020	0.027	0.033	0.066	0.132	3.3

Lead wires for shunt connection

Lead wires for connecting an indicator with a shunt can be manufactured according to specifications as accessories to the indicator.

The standard is: two 2mm² - 2m (one-way) 1500V heat-resistant vinyl wires (blue) for electric equipment.

Remarks (1) Only wires with a cross-sectional area of 2mm² are provided; other types of wires are to be prepared by the customer.

DC ammeter with lead wire adjustment resistor

If a DC ammeter combined with a shunt is to be arranged in advance with the lead wire length being indeterminate, use a DC ammeter with a lead wire adjustment resistor, which can be adjusted according to the lead wire resistance after installation of the indicator.

Adjustment range of lead wire resistance

The lead wire resistance adjustment range is the same as the maximum allowable resistance value of lead wire in the "Table of maximum allowable values of lead wires."

Adjustment method

Adjustment by voltage application

Disconnect the lead wires connected to the voltage terminals of the shunt, and adjust with the lead wire adjustment resistor so that the indicator deflects fully when a voltage corresponding to the indicator rating is applied to the respective ends of the lead wires.

Accessories

Shunt for DC ammeter

Specifications

Accuracy	Grade 0.5 Percentage with respect to the rated voltage drop between voltage terminals or the shunt resistance value when the consumption current of the indicator is ignored.
Rated voltage	60mV (standard), 100mV (quasi-standard)
Rated current	1~7500A
Structure	Shunt with base for 150A or less, shunt without base for 200A or more.
Voltage test	3320VAC for 5s (applies only to shunts with base)
Insulation resistance	10M Ω or more at test voltage of 500V (applies only to shunts with base)

Remarks (1) For low-current shunts, the influence of the consumption current may be significant in some cases. If a shunt is ordered separately, it may be necessary to adjust the indicator that is used in combination with it.

(2) Shunts are designed for a temperature rise limit of 80°C at a current that is 80% of the rated current. For this reason, adequate care is required when tightening the bus lines in high-current, large-loss applications.

(3) Shunts with an insulating base can also be manufactured for rated currents greater than 150A and 600A or less.

Rating selection and mounting

1. Rating selection

For the shunt rating, select a current value with adequate allowance, taking into consideration that a shunt is a heat source. (As a general rule, use a shunt for values approximately 1.5 times or more of the continuous operating current.)

2. Mounting attitude

Mount the shunt as shown in the diagram.

3. Voltage terminals

Two voltage terminals are provided at one side block for shunts with a voltage of 2000A or more. In this case, use the diagonally positioned voltage terminal. (Error may increase by approximately 0.5% when the voltage terminals are used in parallel.)

Number of sheets at ourrent terminal: 3

Outer dimensions

	Rated	Outer					Variabl	e dimensior						Deliverv
Rated current A	voltage	dimension drawing		between erminals	Current terminal bolt	Voltage terminal screw	Block width	Shunt base mounting hole interval	shunt	Shunt base mounting hole diameter	Height	Total length	Contacting part length	period
	mV	No.	Р	Q	D	d	Е	R	W	φ	Н	S	l	classification
1, 2, 3, 5	60	FIG. 1	85	_	M5	M4	_	120	26	4.5	25	140	10	
10, 15, 20, 25, 30					M5					4.5	25			
40, 50	60	FIG. 2	85	_	M6	M4	_	120	26	4.5	25	140	10	
60, 75, 100	00	110.2			M8					4.5	30			
150			110					150	30	5.5		175	15	
200					M8	M4			33	-				
250	60	FIG. 3	110	—		M5	-	-	38		15	135	15	
300					M12				43					0
400	60	FIG. 4	115	_	M12	M5	_	_	45		20	155	35	
500													42.5	
600	00		130		MIO				45		00	175	42.5	
750	60	FIG. 4	135		M12	M5	_	_	60	-	30	175	45	
1000 1200			135						60				47	
1200	60	FIG. 5	140	35	M12	M5	-	—	70	-	35	185	52.5	
2000			175	45					85		55	230	52.5	
2500, 3000	60	FIG.6	180	50	M12	M5	—	—	100		70	240	30	
4000			180								80	250	70	
5000			220		M12		150				100	280	85	
6000	60	FIG.7		90		M5	-	150	_		310			
7500			235				160				110	330	100	

• Table of dimension variations (rated voltage: 60mV)

• Table of dimension variations (rated voltage: 100mV)

	Deter	Outer					Variabl	e dimensior	ns mm					Dalhuami
Rated current A	Rated voltage mV	dimension drawing	Interval current t		Current terminal bolt	Voltage terminal screw	Block width	Shunt base mounting hole interval	Width of shunt (base)	Shunt base mounting hole diameter	Height	Total length	Contacting part length	Delivery period classification
	mv	No.	Р	Q	D	d	E	R	W	φ	Н	S	l	classification
1, 2, 3, 5		FIG. 1	85		M5	M4	_	120	26	4.5	25	140	10	
10, 15, 20, 25, 30	100	FIG. 2	85		M5	M4		120	26	4.5	25	140	10	
40, 50		110.2	00		M6	1014	_	120	20	4.5	28	140	10	
60, 75, 100	100	FIG. 2	125		M8	M4	_	180	30	5.5	30	200	10	
150	100	110.2	125		IVIO	1014		100	50	0.0	35	200	10	
200					M8	M4			33					
250	100	FIG. 3	135	_	IVIO	M5	—	-	36		15	165	15	
300					M12	NI5			43					
400			145	_	M12	M5	—	—	45	—	20	185	35	
500	100	FIG. 4	165	_	M12	M5	_	_	45	_	30	210	42.5	
600	100	110.4	100		WITZ	MO						210	42.0	
750			170	_	M12	M5		_	60	—	30	210	45	
1000	100	FIG. 5	175	35					70		35	220	47	
1200	100	FIG. 5	175		M12	M5	—	-	70			220		
1500	100	110.0	195	40					80		45	250	52.5	
2000		FIG. 6	205	45	M12	M5	_	_	85		55	260	30	
2500, 3000		110.0	210	50	IVI 12	NI3			100		70	270	50	
4000	100	FIG.7	210		M12	M5	150		150		80	280	70	
5000		110.7	250	90					100		100	310	85	
6000		FIG. 7	265		M12	M5	160		150		100	340	100	
7500		110.7	200				100		150		100	360	100	

Delivery period cla	assification		
Symbol	◎Standard product	OQuasi-standard product	riangleSpecial product
Reference delivery period	Immediate delivery	Within 20 days	21 to 60 days

YM-8NDV

Specifications

YM-206NDV

LM-110NDV

						Rectangula	r indicators			Wide-angle	indicators		
					Y-2N Series		Y-N Series			L-N Series			
Siz	e (width $ imes$ h	eight)	mm	64×60	85×75	100×85	82×82	102×102	122×122	80×80	110×110		
Мо	del name			YM-206NDV	YM-208NDV	YM-208NDV YM-210NDV		YM-10NDV	YM-12NDV	LM-80NDV	LM-110NDV		
Ор	eration princ	iple			Movable coil			Movable coil		Movab	le coil		
Ac	curacy (grad	e)		2.5			2.	5	1.5	2.5	1.5		
Sca	ale length		(mm)	55	70	85	70	90	100	124	175		
We	Weight (kg)		(kg)	0.07	0.07 0.1 0.1 0.1 0.15 0.3			0.3	0.4				
ion	Maximum	A	Delivery		Consumption current (approx.) (mA)								
icat	scale value	Accessory	period			C		ent (approx.) (me	()				
assif	1, 3, 5V	_	0	1	1	1	1	1	1	1	1		
delivery period classification	10, 15, 30V	_	0	1	1	1	1	1	1	1	1		
erio	50, 100V	—	0	1	1	1	1	1	1	1	1		
ъ Р	150, 300V	—	0	1	1	1	1	1	1	1	1		
live	500, 600V	-	0	(1) Note 1	(1) Note 1	(1) Note 1	1	1	1	1	1		
d de	750V	GR-2	0	(1) Note 1	(1) Note 1	(1) Note 1	(1) Note 1	(1) Note 1	(1) Note 1	(1) Note 1	(1) Note		
and	1000V	multiplier	0	(1) Note 1	(1) Note 1	(1) Note 1	(1) Note 1	(1) Note 1	(1) Note 1	(1) Note 1	(1) Note		
ating	1200V	KR-1	0	(2) Note 1	(2) Note 1	(2) Note 1	(2) Note 1	(2) Note 1	(2) Note 1	(2) Note 1	(2) Note		
or rë	1500V	3-terminal	0	(2) Note 1	(2) Note 1	(2) Note 1	(2) Note 1	(2) Note 1	(2) Note 1	(2) Note 1	(2) Note		
Indicator rating	1800V	multiplier	0	(2) Note 1	(2) Note 1	(2) Note 1	(2) Note 1	(2) Note 1	(2) Note 1	(2) Note 1	(2) Note 1		
lnd	2000V	multiplier	0	(2) Note 1	(2) Note 1	(2) Note 1	(2) Note 1	(2) Note 1	(2) Note 1	(2) Note 1	(2) Note 1		
Pag	e with outer c	e with outer dimensions drawing 35						36		3	7		

Remarks (1) If, with a maximum scale of 600V or less, an externally mounted multiplier is desired, the voltmeter Delivery period classification will be manufactured with the GR-2 multiplier as an accessory.

(2) Indicators with both positive and negative readings on the scale can be manufactured if the larger of the left and right scales is 2000V or less.

Symbol	©Standard	○Quasi-standard	△Special
Gymbol	product	product	product
Reference delivery period	Immediate delivery	Within 20 days	21 to 60 days

The table above shows whether or not a multiplier is provided.

(3) If a high sensitivity (high input resistance) indicator is desired as a DC voltmeter with a maximum scale of 100V or less, please specify the maximum scale and sensitivity current of the indicator.

Voltmeters can be manufactured with a sensitivity current within the range shown for DC ammeters on p.45.

There may be a maximum difference of approximately ±5% with respect to the value specified for the sensitivity current.

- (4) The GR-2 and KR-1 multipliers are dedicated accessories (non-compatible). They can only be used in combination with the indicators specified.
- (5) Please make sure to read the "Safety Precautions" (pp.5-8) and the "Selection Precautions" (p.9) to assist in selecting the model and use specifications suited to the application.

Note 1. These voltmeters do not have a JIS mark.

Connection diagrams

Dual-range indicators

Dual-range indicators with a maximum scale of 600V or less are manufactured with the GR-2 multiplier as an accessory.

[Example] In the case of a dual-range indicator with 0~150V and 0~75V indicator scales.

Outer dimensions of the accessories

Example of double rating scale diagram (YM-208NDV)

YS-8NAA

LS-110NAA

Specifications

	/						Re	ctangula	r indicat	ors					w	ide-angle	e indicato	rs	
	Y-2N Series										Y-N S	Series				L-N S		-	
Size	e (wi	idth × height) mm	64>	<60	85>	<75	100	×85	82>	<82	102>	×102	122>	<122	80>	<80	110×	(110	
Мос	del n	name	YS-20	6NAA	YS-20	8NAA	YS-21	0NAA	YS-8	NAA	YS-1	ONAA	YS-1	2NAA	LS-8	ONAA	LS-11	ONAA	
Ope	eratio	on principle		Movable iron core Movable iron core											Movable	iron core			
Acc	urac	cy (grade)		2.5 2.5 1.5									.5	2	.5	1.	5		
	quer	-		50 and 60Hz															
		ength (mm)		55 70 85 70 90 100												24	175		
		nption VA (VA)		.0	1	-	1	-	1	-		.0		.0		.0	2.	-	
Wei	<u> </u>	(kg)	0		0		-	0.15		0.1		15	0	-	-	.3	0.		
tion		Maximum scale value													Ordinary	Expanded	Ordinary	Expanded	
ficat	cator	500mA	0	0	0	0	0	0	0	0	0	0	0	0	_	_	_		
assi	indi	1, 3A	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
riod cla	Direct indicator	5, 10, 15, 20, 30A	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Indicator rating and delivery period classification	Indicator combined with CT	5/5, 10/5, 15/5, 20/5, 30/5A 40/5, 50/5, 60/5, 75/5A 100/5, 150/5, 200/5, 250/5A 300/5, 400/5, 500/5A	0	O	0	0	0	0	0	O	0	0	0	0	0	0	0	0	
ator ratir	cator col	/5A (indicator rating 5A)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Indica	Indic	/1A (indicator rating 1A)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Page	Page with outer dimensions drawing 35										3	6			37				

Remarks Please make sure to read the "Safety Precautions" (pp.5-8) and the "Selection Precautions" (p.9) to assist in selecting the model and use specifications suited to the application.

 Delivery period classification

 Symbol
 Standard
 Oquasistandard
 Special

Expanded scale indicator

Use expanded scale indicators in motor circuits or other locations where overcurrents flow temporarily.

The effective measurement range is up to the indicator rating value (1x value). The expanded scale part is for reference only, and the scale numerals are indicated in red.

Remarks Ensure that a current exceeding the rating is applied such that (the applied current (A)/rated current (A))²Xapplication duration does not exceed 500.

Example of expanded scale diagram (YS-206NAA)

Specifications

\setminus	Rated scale	Ex	panded scale va	lue		
$ \setminus$	value	Expanded 2x	Expanded 3x	Expanded 5x		
	1A	2A	ЗA	5A		
	ЗA	6A	9A	15A		
Ħ	5A	10A	15A	25A		
Direct	10A	20A	30A	50A		
	15A	30A	45A	75A		
	20A	40A	60A	_		
	30A	60A	90A	—		
oined h CT	Indicator rating: 5A Indicator rating: 1A	CT ratio×10A	CT ratio×15A	CT ratio×25A		
Comt	Indicator rating: 1A	CT ratio×2A	CT ratio×3A	CT ratio×5A		

Recommended ammeter scale values for motor circuits 200V 3-phase induction motor

product

Reference delivery period Immediate delivery

product

Within 20 days

product

21 to 60 days

	Rated current	Recommended sca	le
Motor output (kW)	(reference value A)	Ammeter scale (Expanded 3x)	CT ratio
0.2	1.8	0-3-9A	—
0.4	3.2	0-5-15A	5/5A
0.75	4.8	0-7.5-22.5A	7.5/5A
1.5	8	0-10-30A	10/5A
2.2	11.1	0-15-45A	15/5A
3.7	17.4	0-25-75A	20/5A
5.5	26	0-30-90A	30/5A
7.5	34	0-50-150A	40/5A
11	48	0-60-180A	60/5A
15	65	0-75-225A	75/5A
18.5	79	0-100-300A	100/5A
22	93	0-120-360A	120/5A
30	125	0-150-450A	150/5A
37	160	0-200-600A	200/5A

Mitsubishi Electric uses a three-fold expanded scale indicator as the standard specification.

Uniform scale

5,11111111

YR-206NAA

YR-8NAA

Specifications

/	<u> </u>						Re	ctangula	r indicat	ors					W	ide-angle	e indicate	ors
					Y-2N \$	Series					Y-N S	Series				L-N S	Series	
Size	e (wi	dth $ imes$ height) mm	ht) mm 64×60 85×75 100×82								1022	<102	122>	×122	80>	<80	110×110	
Мос	del n	ame	YR-20	6NAA	YR-20	8NAA	YR-21	0NAA	YR-8NAA YR-10NAA YR-12NAA					2NAA	LR-8	ONAA	LR-11	IONAA
Оре	eratic	on principle			Rec	tifier					Rec	tifier				Rec	tifier	
Acc	urac	y (grade)			2	.5				2	.5		1	.5	2	.5	1	.5
Free	quen	су								50 and	1 60Hz		•					
Sca	le le	ngth (mm)	5	5	7	0	8	5	7	0	g	0	10	00	1:	24	1	75
Wei	ght	(kg)	0.	.1	0	.1	0.	15	0	.1	0.	15	0	.3	0	.3	0	.5
	Ν	Maximum scale value							Consun	nption VA	or volta	ge drop						
	, I		Ordinary	Expanded	Ordinary	Expanded	Ordinary	Expanded	Ordinary	Expanded	Ordinary	Expanded	Ordinary	Expanded	Ordinary	Expanded	Ordinary	Expanded
	200, 300µA — — 1.7V — 1.7V						—	1.7V	_	1.7V	—	1.7V		—	—	—	_	
	Note 1	500µA	1.4V	—	1.4V	—	1.4V		1.4V	_	1.4V	—	1.4V	—	—	—	-	_
Indicator rating		1, 3, 5mA	1.4V	—	1.4V	—	1.4V		1.4V	_	1.4V	—	1.4V	—	1.4V	—	1.4V	—
or ra	indicator	10, 20, 30, 50, 75mA	1.2V	_	1.2V	_	1.2V	_	1.2V	_	1.2V	—	1.2V	_	1.2V	—	1.2V	
cato	indi	100, 200, 500mA	0.06VA	0.3VA	0.06VA	0.3VA	0.06VA	0.3VA	0.06VA	0.3VA	0.06VA	0.3VA	0.06VA	0.3VA	0.2VA	0.2VA	0.2VA	0.2VA
Indi	Direct	1, 3A	0.06VA	0.3VA	0.06VA	0.3VA	0.06VA	0.3VA	0.06VA	0.3VA	0.06VA	0.3VA	0.06VA	0.3VA	0.2VA	0.2VA	0.2VA	0.2VA
	Dir	5, 10, 15, 20A	0.1VA	0.3VA	0.1VA	0.3VA	0.1VA	0.3VA	0.1VA	0.3VA	0.1VA	0.3VA	0.1VA	0.3VA	0.2VA	0.2VA	0.2VA	0.2VA
		30A	_	0.2VA	_	0.2VA	_	0.2VA	_	0.2VA	—	0.2VA	_	0.2VA	0.2VA	0.2VA	0.2VA	
ਛੋਟੋਟ /5A (indicator rating 5A) 0.				0.3VA	0.1VA	0.3VA	0.1VA	0.3VA	0.1VA	0.3VA	0.1VA	0.3VA	0.1VA	0.3VA	0.2VA	0.2VA	0.2VA	0.2VA
	Indic coml with	/1A (indicator rating 1A)	0.06VA	0.3VA	0.06VA	0.3VA	0.06VA	0.3VA	0.06VA 0.3VA		0.06VA 0.3VA		0.06VA	0.3VA	0.2VA	0.2VA	VA 0.2VA 0.2V	
De	elive	ry period classification	0 0)	0			0 0			0		(С
Page	e with	n outer dimensions drawing			3	5					3	6			37			

Remarks (1) Error may occur due to waveform distortion.

(2) LR-110NAA and LR-80NAA models rated 100mA to 30A incorporate an approximate effective value rectifying circuit.

(3) Please make sure to read the "Safety Precautions" (pp.5-8) and the "Selection Precautions" (p.9) to

assist in selecting the model and use specifications suited to the application. Note 1. The operating circuit voltage is 300V or less for the Y-2N Series, and 600V or less for the Y-N Series and L-N Series.

Connection diagrams

Delivery period classification

product

Reference delivery period Immediate delivery Within 20 days

Symbol

product

product

21 to 60 days

Note 2. For low-voltage circuits, grounding of the secondary side of the current transformer is unnecessary.

Ordering method

YS-8NAV

LS-110NAV

Specifications

	_	_				Rectangula	r indicators			Wide-angle	e indicators		
	Y-2N Series Y-N Series										Series		
Siz	e (wi	dth $ imes$ height)	mm	64×60	85×75	100×85	82×82	102×102	122×122	80×80	110×110		
Мо	del n	ame		YS-206NAV	YS-208NAV	YS-210NAV	YS-8NAV	YS-10NAV	YS-12NAV	LS-80NAV	LS-110NAV		
Op	Peration principle Movable iron core Movable iron core									Movable	iron core		
Acc	curac	cy (grade)			2.5		2	.5	1.5	2.5	1.5		
Fre	quer	псу					50 and	d 60Hz			•		
Sca	ale le	ngth	(mm)	55	70	85	70	90	100	124	175		
Cor	nsum	nption VA	(VA)	3	3	3	3	3	6	3	3		
We	ight		(kg)	0.1	0.1	0.15	0.15	0.15	0.4	0.4	0.5		
		Maximum sca	ale value				Delivery period	d classification					
		50V	50V O O O O O O								_		
	ō	75, 100, 110	5, 100, 110V O O O O O								_		
	Direct indicator	150V		O	0	0	O	0	0	0	0		
	ting	190, 260V		0	0	0	0	0	0	—	_		
ting	rect	300V		O	O	0	O	0	0	0	0		
or ra	ā	400, 500V		—	—	—	—	—	0	_	_		
Indicator rating		600V		—	—	—	—	_	O	0	0		
Indi	Ę	VT ratio	Scale										
	Image: state Image: state<									0	0		
	<u><u><u></u><u></u><u></u><u></u><u></u><u>3300/110V</u><u>4500V</u></u></u>												
	L COM	6600/110V	9000V										
	Indicator combined with VT	Besides the above □/110V	VT ratio X 150V	0	0	0	0	0	0	0	0		
Pag	e with	n outer dimens	ions drawing		35			36		37			

Remarks (1) A specially rated AC voltmeter with a rectifier indicator and a maximum scale of 600V or less is manufactured. (2) Please make sure to read the "Safety Precautions" (pp.5-8) and the "Selection Precautions" (p.9) to assist in selecting the model and use specifications suited to the application.

Note 1. The LS-110NAV and LS-NAV direct 600V indicators are provided with the KR-1 multiplier as an accessory (power consumption is approximately 6VA). The KR-1 multiplier is a dedicated accessory (non-compatible accessory), and thus cannot be used in combinations other than those designated for the indicators.

Delivery period classification

Symbol	©Standard	OQuasi-standard	△Special
Gymbol	product	product	product
Reference delivery period	Immediate delivery	Within 20 days	21 to 60 days

Connection diagrams

Numbor of

Note 2. For low-voltage circuits, grounding of the secondary side of the instrument voltage transformer is unnecessary.

Ordering method

The items in _____ must be specified.

Indicator combined with instrument voltage transformer

	inpined wit	ii iiistruiiieiit	voltage transfo	ormer		Number of
Model name	Indicator rating	Scale	VT ratio	Cover type	Special specifications	units
YS-8NAV	150V	0-9000V	6600/110V	В	Double scale, colored lines, etc.	10

Direct indicator

Model name	Indicator rating	Scale	Cover type	Special specifications	units
YS-8NAV	300V	0-300V	В	Double scale, colored lines, etc.	10

Outer dimensions of accessory

Uniform scale

YR-206NAV

YR-8NAV

Specifications

_		_					Re	ctangula	r indicat	ors					W	ide-angle	e indicato	ors
					Y-2N \$	Series					Y-N S	eries				L-N S	Series	
Size (width × height) mm 64×60 85×75 1002							×85	82×82 102×102 122×122			×122	80>	×80	110×110				
Мо	del name		YR-20	6NAV	YR-20	8NAV	YR-21	0NAV	YR-8	NAV	YR-1	NAV	YR-1	2NAV	LR-8	0NAV	LR-11	0NAV
Op	eration pri	inciple			Rect	ifier					Rec	tifier				Rec	tifier	
Acc	curacy (gra	ade)			2.	5				2	.5		1	.5	2	.5	1	.5
Fre	quency									50 and	d 60Hz				-			
Sca	ale length	(mm)	5	5	7	0	8	5	7	0	9	0	1(00	1:	24	17	75
We	ight	(kg)	0.0	07	0.	1	0.	.1	0.1 0.15 0.5						0	.4	0	.5
							C	onsumpt	tion current and delivery period classification									
	Maxir	num scale value	Consumption	Delivery period	Consumption	Delivery period	Consumption	Delivery period	Consumption	Delivery period	Consumption	Delivery period	Consumption	Delivery period	Consumption	Delivery period	Consumption	Delivery period
bu		5, 10, 30V	1mA	0	1mA	0	1mA	0	1mA	0	1mA	0	1mA	0	0.1VA	0	0.1VA	0
rating		50V	1mA	0	1mA	0	1mA	0	1mA	0	1mA	0	1mA	0	0.2VA	0	0.2VA	0
Indicator	Direct	75, 100, 110V	1mA	0	1mA	0	1mA	0	1mA	0	1mA	0	1mA	0	0.5VA	0	0.5VA	0
lica	indicator	150V	2mA	0	2mA	0	2mA	0	2mA	0	2mA	0	2mA	0	0.6VA	0	0.6VA	0
⊆ 1100catol 190, 260V 1mA ○ 1mA ○ 1mA ○							0	1mA	0	1mA	0	1mA	0	1.2VA	0	1.2VA	0	
300V 2mA O 2mA O						0	2mA	0	2mA	0	2mA	0	2mA	0	1.2VA	0	1.2VA	0
							0	1mA	0	1mA	0	1mA	0	0.6VA	0	0.6VA	0	
	Combined with VT ratio×150V 2mA O 2mA O 2mA						0	2mA O 2mA O 2mA O					0	0.6VA O 0.6VA O				
Pag	e with oute	er dimensions drawing			3	5					3	6			37			

Remarks (1) Although the scale of the rectifier AC voltmeter is substantially uniform with an indicator having a Delivery period classification maximum scale value of 10V or less, the divisions are slightly reduced near "0".

(2) Error may occur due to waveform distortion.

(3) LR-110NAV and LR-80NAV models rated 75V to 300V incorporate an approximate effective value rectifying circuit.

(4) Please make sure to read the "Safety Precautions" (pp.5-8) and the "Selection Precautions" (p.9) to assist in selecting the model and use specifications suited to the application.

Note 1. These models do not have a JIS mark.

Symbol	©Standard	OQuasi-standard	∆Special
Symbol	product	product	product
Reference delivery period	Immediate delivery	Within 20 days	21 to 60 days

Specifications

Mechanical Indicators

YP-208NW

YP-10NW

	<u> </u>	<u> </u>											R	ecta	ngula	r indicate	ors									
										Y-2N	Series									,	Y-N S	Serie	s			
Siz	Size (width × height) mm 64×60 85×75 100×85											82>	<82				102>	<102								
Mo	del n	ame			Y	′P-20	6NW			YP-2	08NW			`	YP-2	IONW			YP-8	BNW			`	YP-1	ONW	
Ope	eratio	on principle								Tran	sducer									٦	Trans	sduce	er			
Acc	urac	y (grade)								2	2.5										2	2.5				
Fre	quen	су							_					5	0 and	60Hz		_								
Sca	ıle le	ngth	(mm)			5	5				70				8	5			7	0				9	0	
We	ight		(kg)																							
tion		Ratir	na	-	umpti	on VA	Σ	poi u		umption VA	2	po u	-	sumpti	ion VA	≥	jo e	-	umption VA	Ž	po u		umpti	on VA	≥	poi n
sifice	Circuit			cuit	Curren	it circuit	SSC	y per ficati	circuit	Current circu	t SS	y pel	lircuit	Currei	nt circuit	SSSC	y per	cuit	Current circuit	SSC	y per	circuit	Curren	it circuit	ssc	y pel ficati
Indicator rating and delivery period classification	ē	Secondary rating	Indicator rating (Po) kW	Voltage circuit	1 3	l2	Accessory	Delivery period classification	Voltage circuit	1 2 3	Accessory	Delivery period classification	Voltage circuit	1 3	12	Accessory	Delivery period classification	Voltage circuit	1 2 3	Accessory	Delivery period classification	Voltage circuit	I1 Із	l2	Accessory	Delivery period classification
peric	1-phase 2-wire	110V 5A	0.4~0.6	2.2	1	.0	T-150	0	2.2	1.0	T-150	0	2.2	1	.0	T-150	0	2.2	1.0	T-150	0	2.2	1	.0	T-150	0
ery	1-ph 2-w	220V 5A	0.8~1.2	4.4	1	.0	T-150	0	4.4	1.0	T-150	0	4.4	1	.0	T-150	0	4.4	1.0	T-150	0	4.4	1	.0	T-150	0
deliv	1-phase 3-wire	100/200V 5A	0.8~1.2	1.6	0	.5	T-150	0	1.6	0.5	T-150	0	1.6	0).5	T-150	0	1.6	0.5	T-150	0	1.6	0	.5	T-150	0
and	3-phase 3-wire	110V 5A	0.8~1.2	1.6	0	.5	T-150	0	1.6	0.5	T-150	0	1.6	0).5	T-150	0	1.6	0.5	T-150	0	1.6	0	.5	T-150	0
ing a	3-ph	220V 5A	1.6~2.4	3.2	0	.5	T-150	0	3.2	0.5	T-150	0	3.2	0).5	T-150	0	3.2	0.5	T-150	0	3.2	0	.5	T-150	0
or rat	9.6	$\frac{110}{\sqrt{3}}$ /110V 5A	0.8~1.2	1.6	0.5	1.0	T-150	0	1.6	0.5 1.0	T-150	0	1.6	0.5	1.0	T-150	0	1.6	0.5 1.0	T-150	0	1.6	0.5	1.0	T-150	0
icato	3-phase 4-wire	110/190V 5A	1.4~2.0	2.8	0.5	1.0	T-150	0	2.8	0.5 1.0	T-150	0	2.8	0.5	1.0	T-150	0	2.8	0.5 1.0	T-150	0	2.8	0.5	1.0	T-150	0
Ind	σ`	220/380V 5A	2.8~4.0	3.5	0.5	1.0	T-150	0	3.5	0.5 1.0	T-150	0	3.5	0.5	1.0	T-150	0	3.5	0.5 1.0	T-150	0	3.5	0.5	1.0	T-150	0
Pag	age with outer dimensions drawing 35 36																									

Remarks (1) In regards to "Indicator rating (Po) kW" in the "Rating" column:

1-phase, 2-wire [Po=110V×5A=550 ~ 0.5kW wattmeters $Po=220V\times 5A=1100\,{\simeq}\,1.0kW$ 3-phase, 3-wire $\int P_0 = \sqrt{3} \times 110V \times 5A = 953 \simeq 1 kW$ wattmeters l Po=√3×220V×5A=1906≃2kW

(Po=0.4 to 0.6kW, taking into account adjustment range multiplying factors of 0.8 to 1.2) (Po=0.8 to 1.2kW, taking into account adjustment range multiplying factors of 0.8 to 1.2) (Po=0.8 to 1.2kW, taking into account adjustment range multiplying factors of 0.8 to 1.2) (Po=1.6 to 2.4kW, taking into account adjustment range multiplying factors of 0.8 to 1.2)

(Po=0.8 to 1.2kW, taking into account adjustment range multiplying factors of 0.8 to 1.2)

3-phase, 4-wire wattmeters

 $Po=3\times \frac{110}{\sqrt{3}}V\times 5A=\sqrt{3}\times 110V\times 5A=953\simeq 1kW$

Po=3×110V×5A= $\sqrt{3}$ ×190V×5A=1650 \simeq 1.7kW (Po=1.4 to 2.0kW, taking into account adjustment range multiplying factors of 0.8 to 1.2)

Po=3×220V×5A= $\sqrt{3}$ ×380V×5A=3300 \simeq 3.4kW (Po=2.8 to 4.0kW, taking into account adjustment range multiplying factors of 0.8 to 1.2)

(2) Bidirectional deflection indicators can also be manufactured.

(3) Models with a 1A current rating can also be manufactured; the power consumption is basically the same as that of a 5A model.

The indicator rating value in this case is calculated by substituting 1A in place of 5A in the equations of Remarks (1).

(4) The T-150 rectifier is a dedicated accessory (non-compatible accessory), and thus cannot be used in combinations other than those designated for the indicators. The distance between the indicator and the T-150 rectifier must be 5m or less, or the round-trip lead wire resistance must be 0.5Ω or less. (5) The weight of the T-150 accessory rectifier is approximately 1kg.

(6) Use a wattmeter with an input voltage in the range of 85 to 115% of the rated value (rated voltage ±15%).

The indication may be unstable when used with an input voltage of 85% or less of the rating or the input voltage is switched on and off.

(7) Please make sure to read the "Safety Precautions" (pp.5-8) and the "Selection Precautions" (p.9) to assist in selecting the model and use specifications suited to the application.

Scale calculation formula for wattmeter

Phase-wire system	Secondary rating	Scale calculation formula for wattmeter	Remarks
1 phase 0 wire	110V 5A	Indicator scale P (kW)=VT ratio \times CT ratio \times Po (0.4~0.6)	The value at the left is
1-phase 2-wire	220V 5A	Indicator scale P (kW)=CT ratio × Po (0.8~1.2)	multiplied by 1/5 in the case of
1-phase 3-wire	100/200V 5A	Indicator scale P (kW)=CT ratio × Po (0.8~1.2)	a CT secondary current of 1A.
Q phase Q wite	110V 5A	Indicator scale P (kW)=VT ratio × CT ratio × Po (0.8~1.2)	
3-phase 3-wire	220V 5A	Indicator scale P (kW)=CT ratio × Po (1.6~2.4)	
	<u>110</u> /110V 5A	Indicator scale P (kW)=VT ratio \times CT ratio \times Po (0.8~1.2)	
3-phase 4-wire	110/190V 5A	Indicator scale P (kW)=VT ratio × CT ratio × Po (1.4~2.0)	
	220/380V 5A	Indicator scale P (kW)=VT ratio × CT ratio × Po (2.8~4.0)	

Calculation example: In the case of a 3-phase, 3-wire circuit, VT 6600/110V and CT 100/5A

Indicator scale P (kW)=
$$\frac{6600}{110} \times \frac{100}{5} \times Po (0.8 \sim 1.2) = 960 \sim 1440 kW$$

Therefore, wattmeters can be manufactured with a scale of 960-1440kW.

This varies slightly according to the rating. Refer to the Wattmeter Scale Selection Reference Table on p.58 for details.

YP-12NW

Delivery period classification

product

Reference delivery period Immediate delivery Within 20 days

Symbol

product

product

21 to 60 days

LP-110NW

Specifications

Rectangular indicators Wide-angle indicators Y-N Series L-N Series Size (width × height) 122×122 80×80 110×110 mm YP-12NW LP-80NW LP-110NW Model name Operation principle Transducer Transducer Accuracy (grade) 1.5 2.5 1.5 Frequency 50 and 60Hz Scale length 100 124 175 (mm) Weight (kg) 0.5 0.3 0.6 Delivery period classification Delivery period classification Delivery period classification Consumption VA Consumption VA Consumption VA classificatior Rating Accessory Accessory Accessory Circuit Current circuit Current circuit Current circuit Voltage Voltage Voltage circuit circuit circuit Indicator Secondary 11 l1 l1 rating (Po) kW 12 12 12 · period c rating 13 13 13 1-phase 2-wire 110V 5A 0.4~0.6 2.2 1.0 0 2.2 1.0 T-150 0 2.2 0 1.0 _ _ rating and delivery 220V 5A 0.8~1.2 4.4 1.0 0 4.4 1.0 T-150 0 4.4 1.0 0 _ 1-phase 3-wire 100/200V 5A 0.8~1.2 1.6 0.5 0 1.6 0.5 T-150 0 1.6 0.5 0 _ 0.8~1.2 3-phase 3-wire 110V 5A 1.6 0.5 0 1.6 0.5 T-150 0 1.6 0.5 0 220V 5A 1.6~2.4 3.2 0.5 0 3.2 0.5 T-150 0 3.2 0.5 0 $\frac{110}{\sqrt{3}}$ /110V 5A 0.8~1.2 1.6 0.5 1.0 0 1.6 0.5 1.0 T-150 0 1.6 0.5 1.0 0 _ Indicator 110/190V 5A 1.4~2.0 2.8 0.5 1.0 0 2.8 0.5 1.0 T-150 \cap 2.8 0.5 1.0 0 _ _ 220/380V 5A 2.8~4.0 3.5 0.5 1.0 0 3.5 0.5 1.0 T-150 0 3.5 0.5 1.0 \bigcirc 36 Page with outer dimensions drawing 37

Outer dimensions of accessories

Ordering method

Connection diagrams

●1-phase, 2-wire system

●1-phase, 3-wire system

●3-phase, 3-wire system

ŏ

Note 1. For low-voltage circuits, grounding of the secondary sides of the instrument voltage transformer and current transformer is unnecessary.

(Ē

Wattmeter Scale Selection Reference Table

Although the maximum scale of a wattmeter can be determined by VT ratio X CT ratio X indicator rating (Po), the following table shows the manufacturable scale values (minimum, standard and maximum) for various VT ratios and CT ratios. If a scale value other than the standard value is desired, please specify a suitable scale within the manufacturable range.

Table	of manu	factura	able m	aximu	m scale	es for	wattme	eters			: Scale unit	s kW 📃	: Scale	units MW
Phase-wi	re system	1-	phase 2-wi	re	1-phase 3-wire			-	3-phase 3	-wire/3-ph	ase 4-wire			
Ma	Voltage	110	220	440	100/200	110	220	440	3300	6600	11000	22000	33000	66000
CT ratio	Voltage Prufacturable Poge	_	220/110	440/110	-	_	220/110	440/110	3300 /110	6600 /110	11000 /110	22000 /110	33000 /110	66000 /110
	Minimum	2	4	8	4	4	8	15	120	240	400	800	1200	2400
25/5	Standard	2.5	5	10	5	5	10	20	150	300	500	1000	1500	3000
	Maximum	3	6	12	6	6	12	25	180	350	600	1200	1800	3500
	Minimum	4	8	15	8	8	15	30	240	450	800	1500	2400	4500
50/5	Standard	5	10	20	10	10	20	40	300	600	1000	2000	3000	6000
	Maximum	6	12	25	12	12	25	50	350	750	1200	2500	3500	7500
	Minimum	6	12	24	12	12	24	45	350	700	1200	2400	3500	7000
75/5	Standard	7.5	15	30	15	15	30	60	450	900	1500	3000	4500	9000
	Maximum	9	18	35	18	18	35	75	500	1000	1800	3500	5000	10
	Minimum	8	15	30	15	15	30	60	450	900	1500	3000	4500	9000
100/5	Standard	10	20	40	20	20	40	80	600	1200	2000	4000	6000	12
	Maximum	12	24	50	24	25	50	100	750	1500	2500	5000	7500	15
	Minimum	12	24	45	24	24	45	90	700	1400	2400	4500	7000	14
150/5	Standard	15	30	60	30	30	60	120	900	1800	3000	6000	9000	18
	Maximum	18	35	75	35	35	75	150	1000	2000	3500	7500	10	20
000/7	Minimum	16	30	60	30	30	60	120	900	1800	3000	6000	9000	18
200/5	Standard	20	40	80	40	40	80	160	1200	2400	4000	8000	12	24
	Maximum	25	50	100	50	50	100	180	1500	3000	5000	10	15	30
000/5	Minimum	24	45	90	45	45	90	180	1400	2800	4500	9000	14	28
300/5	Standard	30	60	120	60	60	120	240	1800	3600	6000	12	18	36
	Maximum Minimum	35	75	150	75 60	75	150	300	2000	4000	7500	15	20	40
400/5	Standard	30 40	60 80	120 160	80 80	60 80	120 160	250	1800	3800	6000	12	18	38
400/5	Maximum	50	100	180	100	100	180	320 350	2400 3000	4800	8000	16	24	48
	Minimum	45	90	180	90	90	180	350	2800	6000 6000	10 9000	18 18	30	<u>60</u>
600/5	Standard	43 60	120	240	120	120	240	480	3600	7200	12	24	28 36	60 72
000/0	Maximum	75	150	300	150	150	300	600	4000	8500	12	30	40	85
	Minimum	60	120	250	120	120	250	500	3800	7500	13	25	38	75
800/5	Standard	80	160	320	160	160	320	640	4800	9600	16	32	48	96
	Maximum	100	180	350	180	180	350	750	6000	12	18	35	60	120
	Minimum	90	180	380	180	180	380	750	6000	12	18	38	60	120
1200/5	Standard	120	240	480	240	240	480	960	7200	14	24	48	72	140
	Maximum	150	300	600	300	300	600	1200	8500	18	30	60	85	180
	Minimum	120	240	450	240	240	450	900	7000	14	24	45	70	140
1500/5	Standard	150	300	600	300	300	600	1200	9000	18	30	60	90	180
	Maximum	180	350	750	350	350	750	1500	10	20	35	70	100	200
	Minimum	160	300	600	300	300	600	1200	9000	18	30	60	90	180
2000/5	Standard	200	400	800	400	400	800	1600	12	24	40	80	120	240
	Maximum	240	500	1000	500	500	1000	1800	15	30	50	100	150	300
	Minimum	240	450	900	450	450	900	1800	14	28	45	90	140	280
3000/5	Standard	300	600	1200	600	600	1200	2400	18	36	60	120	180	360
	Maximum	350	750	1500	750	750	1500	3000	20	40	75	150	200	400

• Table of manufacturable maximum scales for wattmeters

Note 1. Some of the maximum scale values in the table deviate from the VT ratio X CT ratio X adjustment range multiplying factor. This is because the best values are selected, and the values in the table are given priority.

YP-208NVAR

YP-10NVAR

Specifications

	/													Re	ectar	ngula	r indicate	ors										
									_	Y	-2N \$	Series										Ň	Y-N S	Serie	S			
Siz	e (wi	dth $ imes$ height)	mm			64>	<60				85>	<75				100	×85				82×	<82				102×	(102	
Мо	del n	ame			YF	P-206	NVAR			YF	P-208	BNVAR			YF	P-210	ONVAR			١	'P-8N	IVAR			Y	P-10	NVAR	
Op	eratio	on principle								Т	rans	ducer										٦	Frans	duce	er			
Aco	curac	y (grade)									2.	.5											2	.5				
Fre	quen	су													50) and	1 60Hz											
Sca	ale le	ngth	(mm)			5	5				7	0				8	5				7	0				9	0	
We	eight		(kg)			0.0	07				0.	.1				0.	.1				0.	1				0.1	15	
fication	t	Ratir	ıg	L	umptio		ory	eriod	L	umptio		ory	eriod ion			on VA	ory	eriod ion	-	· ·	on VA	ory	eriod	<u> </u>	umptic		ory	eriod
Indicator rating and delivery period classification	Circuit	Secondary rating	Indicator rating (Po) kvar	Voltage circuit	Curren I 1 I 3	t circuit 12	Accessory	Delivery period classification	Voltage circuit	Curren I 1 I 3	l2	Accessory	Delivery period classification	Voltage circuit	I1 I3	t circuit 12	Accessory	Delivery period classification	Voltage circuit	Curren I 1 I 3	t circuit I2	Accessory	Delivery period classification	Voltage circuit	Current I1 I3	l2	Accessory	Delivery period classification
d deliv	3-phase 3-wire	110V 5A	0.8~1.2	1.6	0.5	1.0	T-150	0	1.6	0.5	1.0	T-150	0	1.6	0.5	1.0	T-150	0	1.6	0.5	1.0	T-150	0	1.6	0.5	1.0	T-150	0
ing an	3-ph	220V 5A	1.6~2.4	3.2	0.5	1.0	T-150	0	3.2	0.5	1.0	T-150	0	3.2	0.5	1.0	T-150	0	3.2	0.5	1.0	T-150	0	3.2	0.5	1.0	T-150	0
ator rat	3-phase 4-wire	$\frac{110}{\sqrt{3}}$ /110V 5A	0.8~1.2	1.6	0.5	1.0	T-150	0	1.6	0.5	1.0	T-150	0	1.6	0.5	1.0	T-150	0	1.6	0.5	1.0	T-150	0	1.6	0.5	1.0	T-150	0
Indice	3-pt 4-w	110/190V 5A	1.4~2.0	2.8	0.5	1.0	T-150	0	2.8	0.5	1.0	T-150	0	2.8	0.5	1.0	T-150	0	2.8	0.5	1.0	T-150	0	2.8	0.5	1.0	T-150	0
Pag	ge with	n outer dimensio	ons drawing								3	5											3	6				

Remarks (1) The varmeters are bidirectional deflection indicators. Unidirectional deflection indicators can be manufactured upon request.

(2) In regards to "Indicator rating (Po) kvar" in the "Rating" column:

3-phase, 3-wire $\begin{cases} Po=\sqrt{3}\times110V\times5A=953\simeq1kvar \\ Po=\sqrt{3}\times220V\times5A=1906\simeq2kvar \\ Po=3\times\frac{110}{\sqrt{3}}V\times5A=\sqrt{3}\times110V\times5A=953\simeq1kvar \\ Po=3\times110V\times5A=\sqrt{3}\times110V\times5A=953\simeq1kvar \\ Po=3\times110V\times5A=\sqrt{3}\times110V\times5A=1650\simeq1.7kvar \\ Po=3\times110V\times5A=\sqrt{3}\times110V\times5A=1650\simeq1.7kvar \\ Po=1.4 to 2.0kvar, taking into account adjustment range multiplying factors of 0.8 to 1.2) \\ Po=3\times110V\times5A=\sqrt{3}\times190V\times5A=1650\simeq1.7kvar \\ Po=1.4 to 2.0kvar, taking into account adjustment range multiplying factors of 0.8 to 1.2) \\ Po=3\times110V\times5A=\sqrt{3}\times190V\times5A=1650\simeq1.7kvar \\ Po=1.4 to 2.0kvar, taking into account adjustment range multiplying factors of 0.8 to 1.2) \\ Po=3\times110V\times5A=\sqrt{3}\times190V\times5A=1650\simeq1.7kvar \\ Po=1.4 to 2.0kvar, taking into account adjustment range multiplying factors of 0.8 to 1.2) \\ Po=3\times100V\times5A=\sqrt{3}\times190V\times5A=1650\simeq1.7kvar \\ Po=1.4 to 2.0kvar, taking into account adjustment range multiplying factors of 0.8 to 1.2) \\ Po=3\times100V\times5A=\sqrt{3}\times190V\times5A=1650\simeq1.7kvar \\ Po=1.4 to 2.0kvar, taking into account adjustment range multiplying factors of 0.8 to 1.2) \\ Po=1.4 to 2.0kvar, taking into account adjustment range multiplying factors of 0.8 to 1.2) \\ Po=1.4 to 2.0kvar, taking into account adjustment range multiplying factors of 0.8 to 1.2) \\ Po=1.4 to 2.0kvar, taking into account adjustment range multiplying factors of 0.8 to 1.2) \\ Po=1.4 to 2.0kvar, taking into account adjustment range multiplying factors of 0.8 to 1.2) \\ Po=1.4 to 2.0kvar, taking into account adjustment range multiplying factors of 0.8 to 1.2) \\ Po=1.4 to 2.0kvar, taking into account adjustment range multiplying factors of 0.8 to 1.2) \\ Po=1.4 to 2.0kvar, taking into account adjustment range multiplying factors of 0.8 to 1.2) \\ Po=1.4 to 2.0kvar, taking into account adjustment range multiplying factors of 0.8 to 1.2) \\ Po=1.4 to 2.0kvar, taking into account adjustment range multiplying factors of 0.8 to 1.2) \\ Po=1.4 to 2.0kvar, taking into account adjustment range multiplying factors of 0.8 to 1.2) \\ Po=1.4 to 2.0kvar, taking into account adjustment range multiplying factors of 0.8 to 1.2) \\ Po=1.4 to 2.0kva$

- (3) Regarding the maximum scale of a varmeter
- With a bidirectional deflection indicator, the left side is LEAD and the right side is LAG with respect to "zero" as the central division, and the standard scale indicates up to 1/2 of the maximum scale value. A scale indicating up to the maximum scale value can also be manufactured.
- With a unidirectional deflection indicator (with "zero" at the left end), the scale indicates up to the maximum scale value. Please specify LEAD or LAG; the standard is LAG.
- (4) Models with a 1A current rating; can also be manufactured; the power consumption is basically the same as that of a 5A model.
- (5) The T-150 rectifier is a dedicated accessory (non-compatible accessory), and thus cannot be used in combinations other than those designated for the indicators. The distance between the indicator and the T-150 rectifier must be 5m or less, or the round-trip lead wire resistance must be 0.5Ω or less.
 (6) Use a varmeter with an input voltage in the range of 85 to 115% of the rated value (rated voltage ±15%).
- The indication may be unstable when used with an input voltage of 85% or less of the rating or the input voltage is switched on and off.
- (7) The weight of the T-150 rectifier is approximately 1kg.
- (8) Please make sure to read the "Safety Precautions" (pp.5-8) and the "Selection Precautions" (p.9) to assist in selecting the model and use specifications suited to the application.

Scale calculation formula for varmeter

Phase-wire system	Secondary rating	Scale calculation formula for varmeter	Remarks
3-phase 3-wire	110V 5A	Indicator scale P (kvar)=VT ratio \times CT ratio \times Po (0.8~1.2) \times 1/2	●The value at the left is
5-phase 5-wire	220V 5A	Indicator scale P (kvar)=CT ratio \times Po (1.6~2.4) \times 1/2	multiplied by 1/5 in the case of
3-phase 4-wire	<u>110</u> √3/110V 5A	Indicator scale P (kvar)=VT ratio \times CT ratio \times Po (0.8~1.2) \times 1/2	a CT secondary current of 1A.
5-phase 4-wire	110/190V 5A	Indicator scale P (kvar)=VT ratio \times CT ratio \times Po (1.4~2.0) \times 1/2	

Calculation example: In the case of a 3-phase, 3-wire circuit, VT 6600/110V and CT 100/5A, and a bidirectional deflection indicator with a scale indicating up to 1/2 the maximum scale value.

Indicator scale P (kvar)= $\frac{6600}{110} \times \frac{100}{5} \times Po (0.8 - 1.2) \times 1/2 = 480 - 720 kvar$

The manufacturable range of the varmeter scale is thus LEAD (480 to 720) ~ 0 ~ LAG (480 to 720) kvar.

The manufacturable range differs slightly according to the rating. For details, refer to the "Varmeter Scale Selection Reference Table" (p.60).

YP-12NVAR

LP-110NVAR

Mechanical Indicators

Specifications

	<u> </u>	_			Rectar	ngular ind	icators					W	/ide-angle	e indicato	rs			
					١	Y-N Series	S						L-N S	Series				
Siz	e (wi	dth $ imes$ height)	mm			122×122	!				80×80					110×110		
Мо	del n	ame			Y	P-12NVA	R			L	P-80NVA	R			LF	P-110NVA	٨R	
Ор	eratio	on principle			Т	ransduce	er						Trans	ducer				
Aco	curac	y (grade)				1.5					2.5					1.5		
Sca	ale le	ngth	(mm)			100					124					175		
We	Weight (kg) 0.5										0.3					0.6		
									Con	sumption	ו VA	2	, ion	Con	sumption	ו VA	≥	, ion
lassific	Circuit	naui	0	e :=	Curren	t circuit	oss	ver) iod icat	≓. ge	Curren	t circuit	sso	Jeliver) period ssificat	it ge	Curren	t circuit	sso	ver) iod icat
Indicator rating and delivery period classification	Ö	Secondary rating	Indicator rating (Po) kvar	Voltage circuit	l1 3	12	Accessory	Delivery period classification	Voltage circuit	l1 3	12	Accessory	Delivery period classification	Voltage circuit	l1 3	12	Accessory	Delivery period classification
d deliv	3-phase 3-wire	110V 5A	0.8~1.2	1.6	0.5	1.0		0	1.6	0.5	1.0	T-150	0	1.6	0.5	1.0	—	0
ting an	3-ph 3-w	220V 5A	1.6~2.4	3.2	0.5	1.0		0	3.2	0.5	1.0	T-150	0	3.2	0.5	1.0	—	0
ator ra	Image: Degree of the set of the								1.6	0.5	1.0	T-150	0	1.6	0.5	1.0	_	0
Indice	3-pf 4-w	110/190V 5A	1.4~2.0	2.8	0.5	1.0	I	0	2.8	0.5	1.0	T-150	0	2.8	0.5	1.0	—	0
Pag	je with	n outer dimensio	ons drawing			36							3	7				

Delivery period classification

Svmbol	©Standard	OQuasi-standard	∆Special
Symbol	product	product	product
Reference delivery period	Immediate delivery	Within 20 days	21 to 60 days

Outer dimensions of accessory

Ordering method

Varmeters

Connection diagrams

●3-phase, 3-wire system

Fig. 2 YP-206NVAR, YP-208NVAR, YP-210NVAR,

Note

Fig. 4 YP-12NVAR and LP-110NVAR

(combined with VT and CT)

(combined with VT and CT)

2

Load

YP-8NVAR, YP-10NVAR and LP-80NVAR

T-150 rectifier (for 3-phase, 3-wire) system varmeter

ŧ Ĕ

(C2

(+C2

(Ŧ)

 $(P_1)(P_2)(P_3)$

Note 1. For low-voltage circuits, grounding of the secondary sides of the instrument voltage transformer and current transformer is unnecessary.

■Varmeter Scale Selection Reference Table

Although the maximum scale of a varmeter can be determined by VT ratio \times CT ratio \times indicator rating (Po), the following table shows the manufacturable scale values (minimum, standard and maximum) for various VT and CT ratios. If a scale value other than the standard scale value is desired, specify a suitable scale within the manufacturable range.

Indicato		Whon th														nits Mva
	or scale	when u						cator is to	indicate	When th	to indic	cate up to	the maxin	ctional def mum scale	e value	
Phase-wir	re system		· · ·	0 1/2 of the ohase 3-w			``	,						deflection wire (line v		
	Voltage	220	440	3300	6600	11000	22000	33000	66000	220	440	3300	6600	22000	33000	66000
an.	Voltage VT ratio	220	440	3300	6600	11000	22000	33000	66000	220	440	3300	6600	22000	33000	66000
CT ratio	no allo	/110	/110	/110	/110	/110	/110	/110	/110	/110	/110	/110	/110	/110	/110	/110
- i i uno	Minimum	4	8	60	120	200	400	600	1200	8	15	120	240	800	1200	2400
25/5	Standard	5	10	75	150	250	500	750	1500	10	20	150	300	1000	1500	3000
	Maximum	6	12	90	180	300	600	900	1800	12	25	180	350	1200	1800	3500
	Minimum	8	15	120	240	400	800	1200	2400	15	30	240	450	1500	2400	4500
50/5	Standard	10	20	150	300	500	1000	1500	3000	20	40	300	600	2000	3000	6000
	Maximum	12	24	180	350	600	1200	1800	3500	25	50	350	750	2500	3500	7500
	Minimum	12	24	180	350	600	1200	1800	3500	24	45	350	700	2400	3500	7000
75/5	Standard	15	30	220	450	750	1500	2200	4500	30	60	450	900	3000	4500	9000
	Maximum	18	35	270	500	900	1800	2700	5000	35	75	500	1000	3500	5000	10
	Minimum	16	30	240	450	800	1600	2400	4500	30	60	450	900	3000	4500	9000
100/5	Standard	20	40	300	600	1000	2000	3000	6000	40	80	600	1200	4000	6000	12
	Maximum	24	50	350	750	1200	2400	3500	7500	50	100	750	1500	5000	7500	15
	Minimum	24	45	350	700	1200	2400	3500	7000	45	90	700	1400	4500	7000	14
150/5	Standard	30	60	450	900	1500	3000	4500	9000	60	120	900	1800	6000	9000	18
	Maximum	35	75	500	1000	1800	3500	5000	10	75	150	1000	2000	7500	10	20
	Minimum	30	60	450	900	1600	3000	4500	9000	60	120	900	1800	6000	9000	18
200/5	Standard	40	80	600	1200	2000	4000	6000	12	80	160	1200	2400	8000	12	24
	Maximum	50	100	750	1500	2400	5000	7500	15	100	180	1500	3000	10	15	30
	Minimum	45	90	700	1400	2400	4500	7000	14	90	180	1400	2800	9000	14	28
300/5	Standard	60	120	900	1800	3000	6000	9000	18	120	240	1800	3600	12	18	36
	Maximum	75	150	1000	2000	3500	7500	10	20	150	300	2000	4000	15	20	40
	Minimum	60	120	900	1800	3000	6000	9000	18	120	250	1800	3800	12	18	38
400/5	Standard	80	160	1200	2400	4000	8000	12	24	160	320	2400	4800	16	24	48
	Maximum	90	180	1500	3000	5000	10	15	30	180	350	3000	6000	18	30	60
	Minimum	90	180	1400	2800	4500	9000	14	28	180	380	2800	6000	18	28	60
600/5	Standard	120	240	1800	3600	6000	12	18	36	240	480	3600	7200	24	36	72
	Maximum	150	300	2000	4000	7500	15	20	40	300	600	4000	8500	30	40	85
	Minimum	120	250	1800	3800	6000	12	18	38	250	500	3800	7500	25	38	75
800/5	Standard	160	320	2400	4800	8000	16	24	48	320	640	4800	9600	32	48	96
	Maximum	180	350	3000	6000	10	18	30	60	350	750	6000	12	35	60	120
	Minimum	180	380	2800	6000	9000	18	28	60	380	750	6000	12	38	60	120
1200/5	Standard	240	480	3600	7200	12	24	36	72	480	960	7200	14	48	72	140
	Maximum	300	600	4000	8500	15	30	40	85	600	1200	8500	18	60	85	180
	Minimum	240	450	3500	7000	12	24	35	70	450	900	7000	14	45	70	140
1500/5	Standard	300	600	4500	9000	15	30	45	90	600	1200	9000	18	60	90	180
	Maximum	350	750	5000	10	18	35	50	100	750	1500	10	20	75	100	200
	Minimum	300	600	4500	9000	16	30	45	90	600	1200	9000	18	60	90	180
2000/5	Standard	400	800	6000	12	20	40	60	120	800	1600	12	24	80	120	240
	Maximum	500	1000	7500	15	24	50	75	150	1000	1800	15	30	100	150	300
				7000	14	24	45	70	140	900	1800	14	28	90	140	280
	Minimum	450	900	7000	17											
3000/5	Minimum Standard	450 600	1200	9000	18	30	60	90	180	1200	2400	18	36	120	180	360

Remarks (1) The standard indicator rating (Po) is 1kvar.

(2) For CT ratio scales not shown in the above table, multiply the ten-fold CT ratio scale values by 0.1 and the 1/10 CT ratio scale values by 10.

Note 1. Some of the maximum scale values in the table deviate from the VT ratio × CT ratio × adjustment range multiplying factor. This is because the best values are selected, and the values in the table are given priority.

Power Factor Meters

For balanced circuits

Specifications

YP-12NPF

LP-110NPF

Mechanical Indicators

							_	Y-2N S	Series									Y-N S	Serie	S		
Siz	e (width $ imes$ heigh	nt) mm		64×	(60			85×	<75			100	×85			82×	(82			102>	<102	
Мо	del name			YP-20	6NPF			YP-20	8NPF			YP-21	0NPF			YP-8	NPF			YP-10)NPF	
Ор	eration principle	•						Transo	ducer									Trans	duce	r		
Aco	curacy (grade)							5	5										5			
Sca	ale			LEAD 0.5~1~0.5 LAG													LEAD	0.5~	<i>-</i> 1~0.	5 LAG		
Fre	quency					50 and	l 60Hz							5	0 and	d 60H	łz					
Sca	ale length	(mm)		5	5			7	0			8	5			70	0			9	0	
We	ight	(kg)		0.0)7			0.	1			0.	.1			0.	2			0.	2	
r rating and delivery od classification	Circuit	Rating	Voltage circuit suo	umption VA Current circuit I 1	Accessory	Delivery period classification	Voltage circuit suo	umption VA Current circuit I1	Accessory	Delivery period classification	Voltage circuit 00	sumption VA Current circuit I1	Accessory	Delivery period classification	Voltage circuit suo	umption VA Current circuit I1	Accessory	Delivery period classification	Voltage circuit suo	umption VA Current circuit I 1	Accessory	Delivery period classification
Indicator I	3-phase 3-wire	110V 5A	1 1 T-100 0 1 <td< th=""><th>0</th></td<>									0										
Indi	balanced circuit	220V 5A	2	1	T-100	0	2	1	T-100	0	2	1	T-100	0	2	1	—	0	2	1		0
Pag	e with outer dime	nsions drawing						3	5									3	86			

Rectangular indicators

				Rectangular ind	icators				N	/ide-angle	e indicato	ors		
				Y-N Series	5					L-N S	Series			
Siz	e (width $ imes$ heigh	nt) mm		122×122				80×80				110×110)	
Мо	del name			YP-12NPF	=			LP-80NPF	=			LP-110NP	F	
Op	eration principle	1		Transduce	r					Trans	ducer			
Acc	curacy (grade)			5						!	5			
Sca	ale			LEAD 0.5~1~0.	5 LAG				LE	AD 0.5~	1~0.5 L	.AG		
F **	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		1-pha	ase 2-wire: specify	50Hz or	60Hz		1	I-phase 2	2-wire: sp	ecify 50⊢	lz or 60Hz		
Fre	quency		3	-phase 3-wire: 50	and 60H	lz			3-pha	ase 3-wire	e: 50 and	60Hz		
Sca	ale length	(mm)		100				124				175		
We	ight	(kg)		0.4				0.4				0.5		
p			Cor	sumption VA	~	p c	Cor	sumption VA	~	70	Cor	nsumption VA	~	p c
peric	Circuit	Rating	rcuit	Current circuit	loss	/ perio	rcuit	Current circuit	ssot	/ perio	rcuit	Current circuit	loss	/ perio catio
rating and delivery period classification	Circuit	Halling	Voltage circuit	l1	Accessory	Delivery period classification	Voltage circuit	l1	Accessory	Delivery period classification	Voltage circuit	l1	Accessory	Delivery period classification
ng ar lassif	1-phase 2-wire-	110V 5A	1.3	0.5	_	Δ					1.3	0.5	—	\triangle
	1-phase 2-wile	220V 5A	2.6	0.5	_	Δ		—			2.6	0.5	_	Δ
Indicator	3-phase 3-wire	110V 5A	1	1	_	0	1	1	_	0	1	1	_	0
Ē	balanced circuit	220V 5A	2	1	_	0	2	1	_	0	2	1	—	0
Pag	e with outer dime	nsions drawing		36				•		3	57		•	

Remarks (1) Indicators with a LEAD 0-1-0 LAG scale can also be manufactured; however, measured values for **Delivery period classification** power factors of 0.5 or less are for reference only

(2) Use with an input current of 1/5 (e.g. 1A) or more of the rated current (e.g. 5A). The error increases as the input current decreases. (3) In a power OFF or no-load state, the pointer of the power factor meter stops at the mechanical zero

point; black point near the power factor of 1.

(4) The T-100 rectifier is a dedicated accessory (non-compatible accessory), and thus cannot be used in combinations other than those designated for the indicators.

Models with a current rating of 1A can also manufactured; the power consumption is basically the same as that of a 5A model.

- (6) Four-quadrant power factor meters can also be manufactured for LI-1NPF 3-phase, 3-wire balanced circuits. Please contact a Mitsubishi Electric representative for details.
- The weight of the T-100 rectifier is approximately 0.9kg.
- (8)
- Cannot use with unbalanced loads. Please specify the frequency in the case of the power factor meter for 1-phase, 2-wire systems. (9)(10) Use with a positive phase sequence.
- (11) In the case of a negative phase sequence input with a 3-phase, 3-wire circuit, LEAD and LAG are indicated in an inverted manner. Indicators return to normal operation when the connections of the P2 and P3 circuits of the voltage input terminals are interchanged.
- (12) Please make sure to read the "Safety Precautions" (pp.5-8) and the "Selection Precautions" (p.9) to assist in selecting the model and use specifications suited to the application.

Ordering method

The items in	must be specified.					Number of
Model name YP-12NPF	Phase-wire system Indicator rating 3P3W 110V 5A	Scale LEAD0.5-1-0.5LAG	Cover type B	Frequency 50Hz	Special specifications Colored lines, colored bands, etc.	 units 3

Specify in the case of a 1-phase, 2-wire system

product

Within 20 days

product

erence delivery period Immediate delivery

Symbol

∧Special

product

21 to 60 days

Outer dimensions of accessory

Connection diagrams

●1-phase, 2-wire systems

●3-phase, 3-wire systems

Mechanical Indicators

Note 1. For low-voltage circuits, grounding of the secondary sides of the instrument voltage transformer and current transformer is unnecessary.

For unbalanced loads

YP-208NPFU

YP-10NPFU

Specifications

\sim													R	ectar	ngula	r indicate	ors										
									Y-	2N 8	Series										'	Y-N S	Serie	5			
Size	e (width $ imes$ heig	ht) mm			64>	<60				85>	<75				1003	×85				82>	(82				102>	(102	
Mod	del name			YF	-206	NPFU			YP	208	BNPFU			YF	P-210	NPFU			Y	P-81	NPFU			Y	P-10	NPFU	
Ope	eration principle)							Ti	rans	ducer										٦	Frans	duce	r			
Acc	uracy (grade)									5	5											Ę	5				
Sca	le							LE/	AD (0.5~	1~0.5 L	.AG									LEAD	0.5~	1~0.	5 L	AG		
Fre	quency	50 or 60Hz																5	50 or	60H	z						
Sca	le length	(mm)	(mm) 55 70 85															7	0				9	0			
We	ght	(kg)			0.0)7				0.	.1				0.	.1				0.	1				0.1	15	
Indicator rating and delivery period classification	Circuit	Rating	Voltage circuit suo	<u> </u>	on VA t circuit I2	Accessory	Delivery period classification	Voltage circuit go	umptio Current I1 I3		Accessory	Delivery period classification	Voltage circuit	<u> </u>	on VA It circuit	Accessory	Delivery period classification	Voltage circuit suo	umptio Current I1 I3		Accessory	Delivery period classification	Voltage circuit suo	umptic Current I1 I3		Accessory	Delivery period classification
ng ar lassif	3-phase 3-wire	110V 5A	1	2	2	T-150	0	1	2	2	T-150	0	1	2	2	T-150	0	1	2		T-150	0	1	2	2	T-150	0
or rati cl	unbalanced loads	220V 5A	2	2	2	T-150	0	2	2	2	T-150	0	2	2	2	T-150	0	2	2		T-150	0	2	2	2	T-150	0
dicate	3-phase	$\frac{110}{\sqrt{3}}$ /110V 5A	0.7	1	2												0	0.7	1	2	T-150	0	0.7	1	2	T-150	0
Ē	4-wire	110/190V 5A	1	1	2	T-150	0	1	1	2	T-150	0	1	1	2	T-150	0	1	1	2	T-150	0	1	1	2	T-150	0
Pag	e with outer dime	nsions drawing								3	5											3	6				

Remarks (1) A LEAD 0~1~0 LAG scale can also be manufactured; however, the measured power factor values of 0.5 or less are for reference only.

(2) Please specify the frequency.

(3) Use with an input current of 1/5 (e.g. 1A) or more of the rated current (e.g. 5A). The error increases as the input current decreases.

(4) In the power off or no-load state, the needle of the power factor meter stops at the mechanical zero point; black point near the power factor of 1.

(5) The T-150 rectifier is a dedicated accessory (non-compatible accessory), and thus cannot be used in combinations other than those designated for the indicators. The distance between the indicator and the T-150 rectifier must be 5m or less, or the round-trip lead wire resistance must be 0.5Ω or less.

(6) Models with a current rating of 1A can also manufactured; the power consumption is basically the same as that of a 5A model.

(7) The weight of the T-150 rectifier is approximately 1.4kg.

(8) Can also be used for balanced circuits.

(9) Use with a positive phase sequence.

For the following models, indicators will not be function normally when a negative-phase sequence is input. Return the indicators to normal operation by interchanging the voltage and current circuits.

Model name	Indication state	Reset indicator for normal operation
YP-206NPFU, YP-208NPFU YP-210NPFU YP-8NPFU, YP-10NPFU LP-80NPFU	The indicator reading is unclear.	Change the voltage and current circuit connections as follows: • Switch P1 and P3 • Switch +C1 and +C3 • Switch C1 and C3

(10) Please make sure to read the "Safety Precautions" (pp.5-8) and the "Selection Precautions" (p.9) to assist in selecting the model and use specifications suited to the application.

Ordering method		
The items in must be specif Phase-wire System YP-12NPFU 3P3W	fied. ndicator rating Scale Cover type Frequency Special specifications 110V 5A LEAD0.5-1-0.5LAG B 50Hz Colored lines, colored bands, etc.	Number of units

YP-12NPFU

LP-110NF

Mechanical Indicators

_				Rectar	ngular ind	icators					W	/ide-angle	e indicato	rs			
			Y-N Series				L-N Series										
Size	e (width $ imes$ heig	ht) mm		122×122					80×80						110×110		
Mod	del name			Y	P-12NPF	U			L	P-80NPF	Ū			LF	P-110NPF	Ū	
Ope	eration principle	•		Т	ransduce	er						Trans	ducer				
Acc	uracy (grade)				5							5	5				
Sca	le			LEAD	0.5~1~0.	5 LAG					LE.	AD 0.5~	1~0.5 L	AG			
Free	quency			5	0 or 60H	z						50 or	60Hz				
Sca	Scale length (mm) 100					124 175											
Wei	ght	(kg)			0.5			0.3						0.6			
p			Consumption VA >		٦	v v		Consumption VA		~	, u	Consumption		ו VA	2	, u	
peric	Circuit	Rating	ge it	Curren	t circuit	IOSS	very iod	ge it	Curren	t circuit	ccessol Delivery period		je it	Curren	t circuit	IOSS	ver) iod
Indicator rating and delivery period classification	Circuit	naung	Voltage circuit	l1 3	l 2	Accessory	Delivery period classification	Voltage circuit	l1 3	12	Accessory	Delivery period classification	Voltage circuit	l1 3	l 2	Accessory	Delivery period classification
ng ar assifi	3-phase 3-wire	110V 5A	1.5	0.	.5	_	0	1	:	2	T-150	0	1.5	0	.5	_	0
or rati cl	unbalanced loads	220V 5A	3	0.	.5	-	0	2	:	2	T-150	0	3	0	.5	_	0
dicato	3-phase	$\frac{110}{\sqrt{3}}$ /110V 5A	1	0.5	1		0	0.7	1	2	T-150	0	1	0.5	1	_	0
Ē	4-wire	110/190V 5A	2	0.5	1	_	0	1	1	2	T-150	0	2	0.5	1	_	0
Pag	age with outer dimensions drawing				36							. 3	7				

Delivery period classification

Symbol	-	OQuasi-standard			
	product	product	product		
Reference delivery period	Immediate delivery	Within 20 days	21 to 60 days		

Outer dimensions of accessories

Connection diagrams

●3-phase, 3-wire systems (unbalanced loads)

●3-phase, 4-wire systems

Note 1. For low-voltage circuits, grounding of the secondary sides of the instrument voltage transformer and current transformer is unnecessary.

YP-8NF

LP-110NF

Specifications

							Re	ctangula	r indicat	ors					Wi	de-angle	e indicato	ors
				`	Y-2N Sei	ries			Y-N Series						L-N Series			
Size	e (width $ imes$ heigh	nt) mm	64>	<60	85>	×75	100	×85	82>	<82	102>	<102	122>	<122	80>	<80	110×110	
Mod	Model name YP-206NF YP-208NF YP-210NF						10NF	YP-	8NF	YP-1	ONF	YP-1	2NF	LP-8	0NF	LP-1	10NF	
Ope	eration principle				Trans	ducer					Trans	ducer				Trans	ducer	
Acc	uracy (grade)					1				-	1		0.	.5		0	.5	
Sca	le length	(mm)	5	5	7	0	8	5	7	0	9	0	10	00	12	24	17	75
Wei	Weight (kg)			.1	0.	15	0.	15	0.	0.15 0.2 0.3		0.3		0.5				
ion	Rated voltage	Scale	Consumption	Delivery period	Consumption	Delivery period	Consumption	Delivery period	Consumption	Delivery period	Consumption	Delivery period	Consumption	Delivery period	Consumption	Delivery period	Consumption	Delivery period
sificat	V	Hz	VA	classification	VA	classification	VA	classification	VA	classification	VA	classification	VA	classification	VA	classification	VA	classification
l class		45~55	2.5	0	2.5	0	2.5	0	2.5	0	2.5	0	2.5	0	1.5	0	1.5	O
Derioc	110	55~65	2.5	0	2.5	0	2.5	0	2.5	0	2.5	0	2.5	O	1.5	0	1.5	O
/ery p		45~65	2.5	0	2.5	0	2.5	0	2.5	0	2.5	0	2.5	0	1.5	0	1.5	0
deliv		45~55	5	0	5	0	5	0	5	0	5	0	5	0	3	0	3	0
ganc	220	55~65	5	0	5	0	5	0	5	0	5	0	5	0	3	0	3	0
Indicator rating and delivery period classification		45~65	5	0	5	0	5	0	5	0	5	0	5	0	3	0	3	0
Special scale							45~75Hz, 170~190Hz											
pul	Special	Scale							85~110Hz, 360~440Hz									
Pag	Page with outer dimensions drawing 35							36					37					

Remarks (1) Allowable voltage variation ranges for 110V: 90~130V; for 220V: 180~260V.

(2) The mechanical zero point of the needle is the black point at the left end of the meter (see scale example below).

(3) Please make sure to read the "Safety Precautions" (pp.5-8) and the "Selection Precautions" (p.9) to assist in selecting the model and use specifications suited to the application.

-Mechanical zero point

Connection diagrams

Note 1. For low-voltage circuits, grounding of the secondary side of the instrument voltage transformer is unnecessary.

Ordering method The items in must be specified. Rated Number of Special specifications Colored lines, colored bands, etc. Model name voltage Scale Cover type units YP-208NF 55-65Hz В 110V 10

Mechanical Indicators

Delivery	per	iod	classific	ation

Symbol	Standard product	OQuasi-standard product	
Reference delivery period	Immediate delivery	Within 20 days	21 to 60 days

Receiving indicators indicate the quantity measured when an electrical signal is received from the transmitter of a detector of a power/instrumentation transducer. Receiving indicators are used to measure industrial quantities, including remote measurements.

- Measurement of pressure, temperature, speed, rpm and other industrial quantities
- •Telemetry measurement (remote measurement) in combination with transducers

Refer to p.151 onward of this catalog regarding the transducers to be used with receiving indicators.

YM-8NRI

LM-110NRI

Standard Quasi-standard

product

Within 20 days

product

Immediate delivery

erence delivery period

∆Special

product

21 to 60 days

Specifications

DC indicators

	_		_				Rectangula	ar indicators			Wide-angl	e indicators
						Y-2N Series			Y-N Series		L-N S	Series
Siz	e (wi	dth ×	(height)	mm	64×60	85×75	100×85	82×82	102×102	122×122	80×80	110×110
Мо	del n	ame			YM-206NRI	YM-208NRI	YM-210NRI	YM-8NRI	YM-10NRI	YM-12NRI	LM-80NRI	LM-110NRI
Op	Operation principle				Movable coil				Movable coil		Mova	ole coil
Acc	urac	y (gr	ade)			2.5		2	.5	1.5	2.5	1.5
Sca	Scale length (mm)			mm)	55 70 85		70	90	100	124	175	
We	ight	_		(kg)	0.07 0.1 0.1			0.1	0.15	0.3	0.3	0.4
		Inc	dicator rating	Delivery period				Internal res	istance (Ω)			
			100 <i>µ</i> A	Δ		2000Ω		200	Ω00	5000Ω	-	_
_			200µA	Δ		1200Ω		120	Ω00	5000Ω	-	_
tior			300 <i>µ</i> A	Δ		1000Ω		1000Ω		1550Ω	920Ω	
ifice			500 <i>µ</i> A	\triangle		730Ω		730Ω		780Ω	580Ω	
ass			1mA Note 1	0		200Ω		20	0Ω	250Ω	18	0Ω
o p	current		5mA	0		8Ω		8Ω		50Ω	8	Ω
eric	2 5 10mA O		0	2Ω			2	Ω	25Ω	6	Ω	
Z D	B		20mA	0	0.8Ω			0.8	3Ω	0.8Ω	3	Ω
live		:	±0.5mA Note 1	0	200Ω			20	0Ω	250Ω	180Ω	
d de			±1mA	0		100Ω		10	0Ω	125Ω	90Ω	
an		sed	1~5mA	0		10Ω		10	Ω	25Ω 50Ω		Ω
ting		bre	2~10mA	0		4Ω		4	Ω	5Ω	1	δΩ
or ra	ator ator			1Ω		1	Ω	5Ω	5Ω 10Ω			
cato				2Ω		2	Ω	3Ω	4	Ω		
Indi	Indicator rating Delivery					Consumption cur	rent (approx. mA)				
			0	1mA			1mA		1mA	11	nA	
	В		zero- pressed 1~5V	0	1.25mA			1.25	ōmA	1.25mA	1.25mA	
Pag	Page with outer dimensions drawing 35						36			37		

Note 1. A 500 niternal resistance indicator can also be manufactured for models with indicator ratings of 1mA **Delivery period classification** and ±0.5mA Symbol

Please specify an internal resistance of 500Ω.

Note 2. In the case of scales with units of electricity (A, V, W, var, cosø, Hz), AC/DC and three-phase circuit symbols are not displayed. For receiving indicators, the symbol for the quantity input is displayed.

Remarks (1) With a zero-suppressed indicator, the zero point of the needle is suppressed mechanically to eliminate the zero point.

Zero-suppressed indicators can be manufactured for values of 20% or lower of the maximum rating of the indicator.

- (2) For cases when the indicator input is DC voltage, an indicator with an adjustment resistor, where the adjustment resistor is added internally to the indicator, can be manufactured. (This type can be used in combination with specific scales.)
 - The range of adjustment by the adjustment resistor is ±5% to ±20% with respect to the maximum scale value.

(3) rpm detectors and other industrial quantity detectors are to be prepared by the customer.

(4) Please make sure to read the "Safety Precautions" (pp.5-8) and the "Selection Precautions" (p.9) to assist in selecting the model and use specifications suited to the application.

[•] The adjustment resistor is mounted on the rear face (i.e., face with terminals) of the indicator.

AC indicators

	_					Rectangula	r indicators			Wide-angle	e indicators	
					Y-2N Series			Y-N Series			L-N Series	
Size	e (wi	dth $ imes$ height)	mm	64×60	85×75	100×85	82×82	102×102	122×122	80×80	110×110	
Mod	Model name			YR-206NRI	YR-208NRI YR-210NRI		YR-8NRI	YR-10NRI	YR-12NRI	LR-80NRI	LR-110NRI	
Operation principle					Rectifier			Rectifier		Rec	tifier	
Acc	urac	y (grade)			2.5		2	5	1.5	2.5	1.5	
Sca	le le	• · ·	nm)	55	70	85	70	90	100	124	175	
tion		Indicator rating	Delivery period		Consumption current, consumption VA, or voltage drop							
classification		200, 300µA	Δ	—	1.1	7V	1.7V		1.7V			
class	ŧ	500μA, 1, 3, 5mA	Δ	1.4V	1.4V		1.4	1.4V		1.4	4V	
riod	current	10, 20, 30, 50, 75mA	Δ	1.2V	1.2V		1.:	2V	1.2V	1.:	2V	
y pe	AC ci	100, 200, 500mA	Δ	0.06VA	0.06VA		0.06VA		0.06VA	0.06VA		
eliver	◄	1, 3A	0	0.06VA	0.0	6VA	0.0	6VA	0.06VA	0.06VA		
ph de		5, 10, 15, 20A	0	0.1VA	0.1	VA	0.1	VA	0.1VA	0.1VA		
ng ai	g	5, 10, 30, 50V	0	1mA	1.0	nA	1n	~^	1mA	10	nA	
r rati	voltage	75, 100V		IIIIA	11	na			IIIIA	11		
Indicator rating and delivery period	v V	150V	0	2mA	2mA		20	0		2mA		
Indi	B O 2mA 2mA 300V 0 2mA 2mA			2mA 2mA			2111A					
Page	Page with outer dimensions drawing 35						36		3	7		

Remarks (1) Industrial quantity detectors are to be prepared by the customer.

(2) Please make sure to read the "Safety Precautions" (pp.5-8) and the "Selection Precautions" (p.9) to assist in selecting the model and use specifications suited to the application.

Delivery period classification

Symbol	©Standard	OQuasi-standard	∆Special
Symbol	product	product	product
Reference delivery period	Immediate delivery	Within 20 days	21 to 60 days

Connection examples

Note 1. Use a shielded wire or twisted wire for connectiing the transducer or other components to the indicator.

Scale units of receiving indicators (representative examples)

Element	Scale	units	Element	Scale units			Element	Scale units		Element	Scale units
DC/AC current	۸	kA	Active power	L/M	kW MW		Percent	%	Speed	meters/minute	m/min
DC/AC current	A	KA	Active power	ĸvv			emperature	°C	Speed	meters/second	m/s
DC/AC voltage	V	kV	Depative newer	lator	1		centimeters	cm	F	levolutions	min ⁻¹
DC/AC voltage	v	ĸv	Reactive power	kvar	Mvar	Length	meters	m		Pressure	MPa
Frequency		-	Dower feator				kilograms	kg		Flow rate	L/min
Frequency	н	IZ	Power factor	r factor $\cos\phi$		Weight	tons	t	Co	oncentration	ppm

Models with various types of units besides the above can also be manufactured.

Ordering method

Indicators with Changeover Switch

AC ammeters

Using AC ammeters with changeover switches, the currents of the respective phases of a 3phase, 3-wire system (or 1-phase, 3-wire system) circuit can be measured by a single meter. • Equipped with a protective circuit to protect the CT secondary circuit.

YR-8UNAA

YR-10UNAA

Specifications

Mechanical Indicators

		Size (width X h	eight) mr	n	82>	<99	102>	<119	122×139		
		Model name			YR-8l	JNAA	YR-10	UNAA	YR-12UNAA		
	Operation principle					Rectifier (movabl		Rectifier			
	Accuracy (grade)				2	.5	2	.5	1	.5	
		Frequency					50 and	d 60Hz			
	Scale length (mm)			7	0	9	0	10	00		
	Weight (kg)			0.	.2	0.	25	0.4			
ation	Terminal configurat	Terminal configuration	Maximum scale	Consumption VA	Ordinary	Expanded	Ordinary	Expanded	Ordinary	Expanded	
ssifica			1A	0.2	Δ	Δ	Δ	Δ	Δ	Δ	
od cla			5A		0	0	0	0	0	Δ	
y peri	Direct	4-terminal	10A	0.2	Δ	Δ				Δ	
eliver		4-1611111111	15A								
and d			20A	0.3	Δ	Δ			Δ	Δ	
ating			30A	0.0							
Indicator rating and delivery period classification	Combined with CT	3-terminal Note 2	/5A (indicator rating: 5A) /1A (indicator rating: 1A)	1.5	O	0	0	0	0	0	

Note 1. With YR-8UNAA and 10UNAA, the 3-terminal-combined-with-CT model is of the movable iron core type.
 Note 2. The 4-terminal configuration can be manufactured for models combined with CT. Please designate as "4-terminal." However, the operation principle will be the rectifying type.

4-terminal. However, the operation principle will be the recurrying type.
Remarks (1) A switch nameplate for 1-phase, 3-wire systems can be manufactured. Please specify "with 1-3 nameplate."

Delivery period classification								
Symbol	◎Standard	OQuasi-standard	∆Special					
Symbol	product	product	product					
Reference delivery period	Immediate delivery	Within 20 days	21 to 60 days					

meplate examples:	OFFRNS OFFRNT] Make sure to specify the indication contents when
lering.		

- (2) Expanded scale refers to scales expanded three-fold.
- (3) Supplementary anti-corrosion treatment is not possible.

(4) Please make sure to read the "Safety Precautions" (pp.5-8) and the "Selection Precautions" (p.9) to assist in selecting the model and use specifications suited to the application.

Outer dimensions

Nar orde

Ordering method

Connection diagrams

AC voltmeters

Using AC voltmeters with changeover switches, the voltages between the respective wires of a 3-phase, 3-wire system (or 1-phase, 3-wire system) circuit can be measured by a single meter. •Equipped with a protective circuit to protect the VT secondary circuit.

YR-8UNAV

∆Special

product

21 to 60 days

YR-10UNAV

Specifications

5	Size (width \times height)	mm		82×99	102×119	122×139		
Model name				YR-8UNAV	YR-10UNAV	YR-12UNAV		
Operation principle				Rectifier				
Accuracy (grade)				2.5	2.5	1.5		
Frequency				50 and 60Hz				
Scale length (mm)				70	90	100		
Weight (kg)				0.15	0.2	0.4		
ation	Maximum scale Consump VA		Consumption VA	Delivery period classification				
	150V	150V		0	0	0		
援 Direct -	300V	300V		0	0	0		
/ beu	600V		2.4	0	0	0		
elver	VT ratio	Scale	0.5	0	0	0		
	440/110V	0-600V						
with VT	3300/110V	0-4500V						
Direct - Direct - build and delivery period classification with VT - with VT -	6600/110V	0-9000V						
India	besides the above, □110V	VT ratio × 150V	0.5	0	0	0		

Remarks (1) In the case of a 1-phase, 3-wire system circuit (100/200V), use a model rated at 300V direct. (2) A switch nameplate for 1-phase, 3-wire systems can be manufactured. Please specify "with 1-3

nameplate." Nameplate examples: OFF R-N N-S R-S OFF R-N N-T R-T Make sure to specify the indication contents when ordering.
(3) Supplementary anti-corrosion treatment is not possible.

(4) Please make sure to read the "Safety Precautions" (pp.5-8) and the "Selection Precautions" (p.9) to assist in selecting the model and use specifications suited to the application.

Outer dimensions

Connection diagrams

Ordering method

The items in	must be specified.								
	Indicator					Number of			
Model name	rating Scale	VT ratio	Cover type	Special specifications		units			
YR-8UNAV	150V 0-600\	440/110V	в	With 1-3 nameplate, colored		10			
TH-BUINAV	1500 0-6000	440/110	D	lines, colored bands, etc.		10			
					-				
 Unnecessary in the case of a direct indicator. 									

Demand meters measure electricity demand and have marker needles that display the maximum and/or minimum values measured.

LB-11ZNAA (AC current demand meter with max. value marker needle)

LB-11ZRMNAA (AC current demand meter relay)

Telemetry measurement (remote measurement) is possible

Receiving indicators can be combined with various transducers to perform remote measurement.

Terminal cover (standard equipment)

Conducting parts are protected to prevent electrical shock.

			Demand meter relays				
		With max. v	alue needle	With max. and min. value marker needles	With max. value marker needle and instantaneous meter	With max. and min. value marker needles and instantaneous meter	With max. value marker needle and instantaneous meter, with alarm setting needle
Appearance		50 200 3 A 3 A 3 A 3 A 3 A 3 A 3 A 3 A		500 0 0 0 0 0 0 0 0 0 0 0 0			
Size (width \times height)		80×80	110×110	110×110	110×110	110×110	110×110
AC ammeters		LB-8ZNAA	LB-11ZNAA	_	LB-11ZRNAA	—	LB-11ZRMNAA
AC voltmeters		LB-8ZNAV	LB-11ZNAV	_	—	LB-11YRNAV	—
Wattmeters	1-phase, 2-wire	_	LB-11ZNW	LB-11YNW	LB-11ZRNW	LB-11YRNW	_
	1-phase, 3-wire						
	3-phase, 3-wire						
	3-phase, 4-wire						
Receiving indicators		_	LB-11ZNRI	LB-11YNRI	LB-11ZRNRI	LB-11YRNRI	—

Demand meter needles

Min. value marker needle (green)

- Driving needle (black)
- Max. value marker needle (red)
- Zero adjuster (driving needle)
- Manual marker needle reset button
- Instantaneous meter needle (black)

Demand meter relay needles

Manual marker needle reset button Relay operation indicator lamp (red) Instantaneous meter needle (black)

Mechanical Demand meter and demand meter relay usage precautions

- (1) Precautions concerning overload As malfunctions may occur when an overload input is applied continuously, select a rating that does not cause the demand meter indicator to exceed the scale.
- (2) Instantaneous meters do not have a zero adjuster (when combined with an indicator). In addition, demand meter relays do not have a zero adjuster for either demand meters (driving needle) or instantaneous meters.
- (3) Although the demand-meter-relay alarm setting needle (yellow) follows the driving needle (black), when the driving needle exceeds the preset alarm value, the alarm setting needle returns to the original state (setting value) when the driving needle returns to the alarm setting value or less.
- (4) The demand-meter-relay contact output turns off regardless of the state when the auxiliary power supply is interrupted and returns to normal operation immediately after power is restored.

(5) When transporting a demand meter relay, make sure to move the setting needle (yellow) to 70% or more of the maximum scale value.

(The contact adjustment value may change or a malfunction may occur due to vibration or shock during transport if the needle is close to the zero point.)

- (6) When the ambient temperature changes suddenly, the zero point of the demand meter may change (1 to 2mm) temporarily. However, this will return to normal after a few hours.
- (7) To reset electromagnetic marker needles, use a switch that "opens" when released. In addition, set the duration of electricity supply to the reset terminal to within five seconds. The maximum/minimum value marker needles can be moved to the position of the driving needle manually or by resetting the electromagnetic marker needle.

AC ammeters/AC voltmeters

- ●AC ammeters Time intervals: 2, 5, 10 and 15 minutes (LB-8ZNAA: 2 and 15 minutes)
- The demand current and instantaneous current can be measured and maximum demand current can be recorded. AC ammeters can also be used for load monitoring; for example, monitoring the load of voltage transformers or feeders.

AC voltmeters Time interval: 2 minutes

•The average and instantaneous voltages can be measured, and maximum and minimum voltages can be recorded. AC voltmeters can also be used to monitor voltage fluctuation in low-voltage bus lines and high-voltage circuits.

(with max, value marker needle

and instantaneous meter)

(with max, and min, value marker

needles and instantaneous meter)

Mechanical Indicators

Specifications

I	Indicator ty	ре			A	AC am	imeter	'S					AC voltmeters		
	Model nam	ne	LB-8ZNAA LB-11ZNAA			L	B-112	ZRNA	A	LB-8ZNAV	LB-11ZNAV	LB-11YRNAV			
	Marker	Max. value	()			•			•	•		•	•	•
Needles	needles	Min. value	_	_		-	_			-	_		_	_	•
	Instantan	eous meter	_	_		-	_				•		_	_	•
Operation principle Bimetal (Rectifying instantaneou				us me	ter)			Bimetal (Bimetal (Rectifying instantaneous meter)						
Accuracy	(driving nee	edle) (grade)	2	.5	1.5								2.5	1.5	
Scale	Demai	nd meter	107 1			1	50				107	1	50		
length (mm)	Instantan	eous meter		_	_					5	60		_	_	50
Ir	ndicator rat	ing	5A, 50 and 60Hz							150V, 50 and 60Hz					
Tin	ne interval	(min)	2	15	2	5	10	15	2	5	10	15	2	2	2
Consumption	Main indic	ator unit (VA)	4	9	4	8.5	9	9	4.5	9	9.5	9.5	4	4	4.5
VA	Electromagr	netic reset (VA)	appro	x. 15		appr	ox. 5			appr	ox. 5		approx. 15	approx. 5	approx. 5
Mar	rker needle	reset			Man	ual ar	nd elec	ctroma	agneti	c rese	et (ele	ctrom	agnetic reset rating: 10	00-110VAC/DC ±10%)	
	Weight (kg	g)	1	.3		1	.4			1	.5		1.3	1.4	1.8
Delivery	/ period cla	ssification	4	2		(C			(С		Δ	0	0

Remarks (1) The instantaneous meter of the AC ammeter has an ordinary scale.

(2) The scale of the instantaneous meter of the AC voltmeter is magnified for the rated voltage range from approx. 80V to 150V.

(3) Please make sure to read the "Safety Precautions" (pp.5-8) and the "Selection Precautions" (p.9) to assist in selecting the model and use specifications suited to the application.

Outer dimensions

product Immediate delivery Within 20 days 21 to 60 days Reference delivery period Connection diagrams

product

Delivery period classification

product

Symbol

Fig. 1 AC current demand meter ۶ CT Note 2 Load INPUT RES Note Switch Ш Power supply for electromagnetic marker needle reset Fig. 2 AC voltage demand meter VT Note 2 l oad INPUT RESET Note 1 Switch <u>.</u> Power supply for electromagnetic marker needle reset Note 1. Connect if an electromagnetic marker needle reset circuit is to be provided. Additionally, use a switch

that "opens" when released. For low-voltage circuits, grounding of the secondary sides of the Note 2. instrument voltage transformer and current transformer is unnecessary.

72

Ordering method

Wattmeters/Receiving indicators

- •Wattmeters Time intervals: 2 and 15 minutes
- •The electricity demand, instantaneous electricity and maximum electricity demand can be recorded. In addition, wattmeters can be used to monitor transformer load and electricity.
- Receiving indicators Time intervals: 2 and 15 minutes
 Receiving indicators are used in combination with various electrical transducers or instrumentation transducers, such as those for measuring temperature, to perform telemeter measurements (remote measurement).

LB-11YRNW (with max. and min. value marker needles and instantaneous meter

Delivery period classification

product

Symbol

product

Reference delivery period Immediate delivery Within 20 days 21 to 60 days

product

LB-11YNRI (with max. and min. value marker needles)

Specifications

Spe	cincatio	0115									ne	eedles and	d instantai	neous met	ter)	mark	er needl	es)
	Indicator ty	pe				Watte	meters						R	leceiving	indicato	rs		
Model name			LB-11	ZNW	LB-11YNW		LB-11Z	RNW	LB-11	YRNW	LB-11ZNRI		LB-11	1YNRI	LB-112	LB-11ZRNRI		YRNRI
	Marker Max. value))	•		(Ð		D		•				•
Needles	needles	Min. value	-	-)	_		(Ð	-	_		•	-	-		•
	Instantane	eous meter	_	-		-	•				-	_	-	_			•	•
O	peration prir	nciple	Bin	netal (M	ovable co	oil instan	itaneous r	taneous meter) + transducer				Bimetal (Movable coil instantaneous meter)						
Accuracy	(driving nee	edle) (grade)				1	.5							1	.5			
	Frequenc	у	50 and 60Hz										-	_				
Scale length	Deman	id meter				1	50							1	50			
(mm)				5	0		<u> </u>				50							
Ti	Time interval (min)		2	15	2	15	2	15	2	15	2	15	2	15	2	15	2	15
Phase-	In	put	Indicator rating (Po)			0	Consum	ption VA					Indicate	or rating				
wire		put		aloator	ianig (i c	,	Voltage circu	iit I1,	lз	l 2				maloatt	or rading			
1-phase	110\	/ 5A		0.4~0	0.6kW		3	3.	.2	—								
2-wire	220\	/ 5A		0.8~1	1.2kW		6	3.	.2	_	-							
3-phase	110\	/ 5A		0.8~1	1.2kW		3	3.	.2	—								
3-wire	-	/ 5A		1.6~2	2.4kW		6	3.	.2	—			1mA DC	Interna	al resistar	nce: 1kΩ	!	
3-phase	$\frac{110}{\sqrt{3}}/11$	0V5A		0.8~1	1.2kW		1	1.	.2	2.4								
4-wire	110/19	0V 5A		1.4~2	2.0kW		1.5	1.	.2	2.4								
	220/38	0V 5A		2.8~4	4.0kW		1.5	1.	2	2.4								
Ma	arker needle	reset	1	Manual a	and elect	romagne	etic reset (electro	magneti	c reset ra	ating: 100	0-110VA	C/DC ±1	0%); con	nsumption	n VA: ap	prox. 5VA	١
Accessories	Mode	l name					50LB DC				T-150LB DC amplifier							
10000001100	Auxiliary p	ower supply	110V	AC +10 -15	%; 50 and	60Hz;	consumpt	on VA:	approx.	12VA	110V AC $^{+10}_{-15}$ %; 50 and 60Hz; consumption VA: approx. 12VA							
Mai	n body weig	ght (kg)	1.	2	1.	4	1.4	Ļ	1	.5	1	.2	1	.4	1	.4	1	.5
Deliver	y period cla	ssification	Δ	7		7				Δ	4	2	4	Δ	4	2	4	Δ

Remarks (1) Refer to the "Wattmeter Scale Selection Reference Table" (p.56) regarding the manufacturable maximum scale value of a wattmeter.

(2) The T-150 rectifier and T-150LB DC amplifier are dedicated accessories (non-compatible). They can only be used in combination with the indicators specified. The distance between the indicator and the T-150LB DC amplifier/T-150 rectifier must be 5m or less, or the round trip lead wire resistance must be 0.5Ω or less.

(3) Wattmeters cannot be manufactured with both positive and negative readings on the scale.

For receiving indicators with a positive/negative scale, use a transducer to convert positive/negative input to positive output (e.g., convert input of -1,000 to 0 to +1,000W to output of 0 to 0.5 to 1mA).

(4) For scales that measure in electrical units (A, V, W, var, cosø, Hz), AC/DC and three-phase circuit symbols are not displayed. For receiving indicators, the symbol for the quantity to be input is displayed.

(5) Please make sure to read the "Safety Precautions" (pp.5-8) and the "Selection Precautions" (p.9) to assist in selecting the model and use specifications suited to the application.

Outer dimensions

Ordering method

The items in _____ must be specified.

Model name Wattmeter LB-11ZNW	Phase-wire system Indicator rating Time interval Sca 3P3W 110V 5A 2M 0	e VT ratio CT ratio Cover type Special specifications -600kW 6600/110V 50/5A B Colored lines, colored bands, etc.	Number of units 2
Model name	Indicator rating Time interval Scale Cov	er type Special specifications	Number of units
Receiving LB-11ZNRI indicator	1mA 2M (0-100) A	B Double scale, colored lines, etc.	2

Outer dimensions of accessories

Wattmeter connection diagrams

Note 1. Connect if an electromagnetic marker needle reset circuit is to be provided. Additionally, use a switch that "opens" when released.

Note 2. For low-voltage circuits, grounding of the secondary sides of the instrument voltage transformer and current transformer is unnecessary.

Connection examples of receiving indicators

Note 1. Connect when an electromagnetic reset circuit is installed. Additionally, use a switch that opens when disconnected. **Note 2.** For low-voltage circuits, secondary-side connections of current transformers/meter transformers are not required.

AC ammeters

Time intervals: 10 and 15 minutes; the 10-minute model complies with the Fundamental Specifications for Electrical Construction of the Ministry of Land, Infrastructure, Transport and Tourism of Japan.

- These indicators are used to measure electricity demand and have a marker needle that displays the maximum value measured, which is used to output an alarm signal.
- AC ammeters can be used to measure electricity demand such as at electric power substations.
 Provided with relay operation indication (LED).

Specifications

	h	ndicator	type	AC am	meters			
		Model na	ame	LB-11ZI	RMNAA			
No	edle	Max. valu	ue marker needle					
INC	Instantaneous meter							
	Ope	eration p	rinciple	Bimetal (Rectifying in	nstantaneous meter)			
	Ac	curacy (grade)	1.	5			
	cale ngth	Dem	nand meter	14	15			
	nm)	Instant	aneous meter	5	0			
	Indicator rating			5A, 50 and 60Hz				
	Time interval (min)			10	15			
Cons	umption	Main in	dicator unit (VA)	1	0			
١	VA	Electroma	agnetic reset (VA)	5	5			
	Mar	ker need	lle reset	Manual and electromagnetic reset (electromagnetic reset rating: 100-110VAC/DC $\pm 10\%$)				
		Output	signal	No-voltage C contact (sustained output/built-in auxiliary relay)				
ij	0	Operatio	n method	Needle passing contact method (with red LED operation indicator)				
Relay unit		Setting	y range	25 to 100% of max	kimum scale value			
lela		Setting a	accuracy	\pm 1.5% (with respe	ct to scale length)			
a.	Co	ntact	Resistive load	250VAC 3A, 1	100VDC 0.2A			
	cap	acity	Inductive load	250VAC 1A, 1	00VDC 0.15A			
	Auxili	ary pow	er supply	100-110VAC/DC \pm 10% consumption VA: 1VA				
		Weight	(kg)	2.5				
D	elivery	period o	lassification	0	0			

Contraction 60	80
40	100
	A
G	aluntur, 3

LB-11ZRMNAA

Needle state	State of contacts
When the driving needle is at or below the setting needle.	a C b c
When the driving needle pushes the max. value marker needle up and reaches the setting needle.	a / ¯_b c
When input decreases and the driving needle drops to or below the setting needle.	a b c
setting needle.	C

Remarks The indicator lamp (red LED) lights up when the relay contacts a-c are ON.

Delivery period classification								
Symbol	©Standard	OQuasi-standard	∆Special					
Symbol	product	product	product					
Reference delivery period	Immediate delivery	Within 20 days	21 to 60 days					

Outer dimensions

Connection diagram

Ordering method

Time interval and indications of demand meters

The time interval (to) of a demand meter refers to the time required for an indicated value (lo) to indicate 95% of a fixed input (I) when the input (I) is supplied continuously.
 Additionally, for 100% of the input (I) to be indicated, a time of approximately 3 times the time interval (to) is required.

Indicated value of demand meters

- •As described above, demand meters operate over a comparatively long time, and unlike ordinary indicators, they are not directly influenced by factors such as short-time input fluctuations and flicker. Demand meters basically indicate the average value (of demand) for load fluctuation within the time interval.
- •The maximum and minimum value marker needles record the maximum and or minimum values indicated by the driving needle, enabling the past maximum demand values to be obtained.

- •For mechanical demand meters or demand meter relays, a coiled bimetal is heated by the input current and the thermal change of the bimetal is used for the indication (bimetal). The indicated value is the effective value of the input.
- •For electronic demand meters or demand meter relays, the same characteristics are realized via computation using a microcomputer.

Selecting the time interval of demand meters

•The time interval of a demand meter is selected according to the facility equipment to be monitored and the purpose of monitoring.

(Demand meter selection example)

Meter Relays

Meter relays enable alarms to be issued and automatic control based on contact outputs at the same time as measurement of voltage, current and other items.

YR-210MRNAA

LR-11MRNAA

Sustained-output models covering the entire scale

Sustained-output needle-pass relays are incorporated, enabling output over the entire scale range to be covered.

100/200VAC switching auxiliary power supply

Can be used with either 100-110VAC or 200-220VAC.

Equipped with relay operation indication lamp

The operating state of the relay can be seen, even from a distance.

Products list

	_				U	pper/Lowe	r-limit setting			Upper-lin	nit setting	
					Rectangular ind	licator	Wide-angle ind	cator	Rectangular ind	icator	Wide-angle ind	icator
Size	e (wi	dth $ imes$	height)	mm	100×83		110×110		100×83		110×110	
Sca	Scale length (mm)		(mm)	72		183		72		183		
	I	ndica	tor	Operation principle	Model name	Accessory	Model name	Accessory	Model name	Accessory	Model name	Accessory
DC		Amr	meter	Movable coil	YM-210MRNDA	—	LM-11MRNDA	—	YM-210MRHNDA	—	LM-11MRHNDA	—
		Volt	meter	Movable coil	YM-210MRNDV	—	LM-11MRNDV	_	YM-210MRHNDV	_	LM-11MRHNDV	—
	Ammeter		neter	Rectifier	YR-210MRNAA	—	LR-11MRNAA		YR-210MRHNAA	_	LR-11MRHNAA	—
		Volt	neter	Rectifier	YR-210MRNAV	—	LR-11MRNAV	_	YR-210MRHNAV	_	LR-11MRHNAV	—
			1-phase 2-wire		YM-210MRNW	T-150	LM-11MRNW	T-150	YM-210MRHNW	T-150	LM-11MRHNW	T-150
	Watt	meter	3-phase 3-wire	Transducer	YM-210MRNW	T-150	LM-11MRNW	T-150	YM-210MRHNW	T-150	LM-11MRHNW	T-150
			3-phase 4-wire		YM-210MRNW	T-150	LM-11MRNW	T-150	YM-210MRHNW	T-150	LM-11MRHNW	T-150
	Varmeter	3-phase 3-wire	Transducer	YM-210MRNVAR	T-150	LM-11MRNVAR	T-150	YM-210MRHNVAR	T-150	LM-11MRHNVAR	T-150	
AC	van	neter	3-phase 4-wire	mansadoer	YM-210MRNVAR	T-150	LM-11MRNVAR	T-150	YM-210MRHNVAR	T-150	LM-11MRHNVAR	T-150
			3-phase 3-wire (balanced)		YM-210MRNPF	T-100	LM-11MRNPF	T-100	YM-210MRHNPF	T-100	LM-11MRHNPF	T-100
	Power	er factor eter	3-phase 3-wire (unbalanced)	Transducer	YM-210MRNPFU	T-150	LM-11MRNPFU	T-150	YM-210MRHNPFU	T-150	LM-11MRHNPFU	T-150
			3-phase 4-wire		YM-210MRNPFU	T-150	LM-11MRPNFU	T-150	YM-210MRHNPFU	T-150	LM-11MRHNPFU	T-150
	Fre	equer	ncy meter	Transducer	YM-210MRNF	T-100	LM-11MRNF	T-100	YM-210MRHNF	T-100	LM-11MRHNF	T-100
R	lecei	ving i	ndicator	Movable coil	YM-210MRNRI	_	LM-11MRNRI	_	YM-210MRHNRI		LM-11MRHNRI	_
			Outp	ut signal	Sustained output							
			Operati	on method	Pointer passing type							
		dle		Туре	Upper limit (H): red; Lower limit (L): green Upper limit (H): red							
		Setting needle	Minimu	m setting width				5% of sca	ale length			
_		ting	Setting ran	Upper limit	5~100%		10~100%		5~100%		10~100%	
Specifications in common		Set	Octang ran	Lower limit	0~95%		0~90%		_		_	
umo	unit		Picku	up value				±1.5%	or less			
in c	Relay unit	Auxiliary power supply	Ra	ted voltage	100-110VAC/200-220VAC switching type							
suc	Re	ower s	Allowable vo	ltage variation range			100-11	0VAC terr	ninal: 90-120VAC			
cati		liary p	/				200-22	OVAC term	ninal: 180-240VAC			
ecifi		Auxi	Con	sumption VA	3.6VA or les	s	4VA or less	6	3.6VA or les	S	4VA or less	s
Spe				Resistive load	250VAC 34	4	250VAC 34	4	250VAC 3A	١	250VAC 34	4
		Cont	act capacity		30VDC 3A, 100VDC 0.2A 30VDC 3A, 100VDC 0.2			C 0.2A	30VDC 3A, 100VD	C 0.2A	30VDC 3A, 100VDC 0.2A	
				Inductive load	250VAC 24		250VAC 0.3		250VAC 2A 250VAC 0.3A			BA
			Contact of	configuration			(L): no-voltage C co			. ,	-voltage C contact	
	With			een terminal and case)	2	2210VAC, 5	· ·		nd relay contact term	inal: 1200	VAC, 1min)	
		Us	sage tempe	rature range			-5°C	~50°C (re	ference: 23°C)			

Operation principles

Non-contact detection

Non-contact detection occurs when the needle reaches the meter relay pick-up value or drop-out value, and is based on changing to the state where the light beam is shielded. For this reason, a protective plate is attached to the needle axis.

Switching circuit/Output relay section

The signal from the non-contact detection section is amplified via the switching circuit, activating the output relay.

Names of components

Upper/Lower-limit operation indication light.

This light turns on as soon as the value set as the upper/lower-limit is reached and stays lit as long as this state is maintained.

Outer dimensions

•Needle position and output relay operation

Remarks The needle position across the entire scale can be indicated by combining the contacts of the lower-limit and upper-limit output relays as shown in the diagram below.

Fig. 1 YM-210MRN and YM-210MRHN Fig. 2 LM-11MRN and LM-11MRHN YR-210MRN and YR-210MRHN LR-11MRN and LR-11MRHN The lower-limit setting needle, the lower-limit setting knob, the The lower-limit setting needle, the lower-limit setting knob, the lower limit LED, and the LOW output terminals are not provided lower-limit LED, and the LOW output terminals are not provided for YM-210MRHN and YR-210MRHN. for LM-11MRHN and LR-11MRHN. Upp etting kno 4-M5 Upper-limit LED Upp 4-M3 mounting 9 15 Lower-limit LED (green) Upp 15 86 Depth di 17 30 Upp Lower-(green) nit LED 32 Upper-limit er needle LED (red) Upper-limit setting knob tting knob 2 104 40 40 Opening dimensions (mm) YM-210MRN, YM-210MRHN YR-210MRN, YR-210MRHN 45 LM-11MRN, LM-11MRHN LR-11MRN, LR-11MRHN Opening dime nsions (mm) Terminal layout diagrams Terminal layout diagrams Depth dimensions Model Depth dimension (mm) Depth dimensions Model Depth dimension (mm) LM-11MRN, LM-11MRHN YM-210MRN, YM-210MRHN 96 146 YR-210MRN, YR-210MRHN LR-11MRN, LR-11MRHN 110 159

Note 1. A cover with red needle cannot be manufactured.

DC ammeters

YM-210MRNDA

Connection diagram

(Shunt)

Load

Fig. 1 YM-210MRNDA and LM-11MRNDA

LM-11MRNDA

Specifications

				Rectangular	r indicators	Wide-angle	indicators		
			Upper/Lower-limit setting Upper-limit setting		Upper/Lower-limit setting	Upper-limit setting			
Size (width × height) mm		mm	100>	<83	110×110				
Мо	del name			YM-210MRNDA	YM-210MRHNDA	LM-11MRNDA LM-11MRHNDA			
Ope	peration principle			Movab	le coil	Movable coil			
Acc	ccuracy (grade) 2.5 1.5			5					
Sca	Scale length (mm)		72	2	17	5			
We	Weight (kg)		(kg)	0.	7	1.8			
	Maximum s	scale value	Delivery period		Internal resistance (Ω) or consumption current				
rating		1mA	0	70	Ω	650Ω			
	Direct	10mA	0	30	2	7Ω			
Indicator	Direct	20mA	0	2.5	2.5Ω		Ω		
Indi	1, 3, 5A O		0	60mV(1	10mA)	100mV(10mA)			
	Combined with shunt	1~7500A	0	60mV(1	10mA)	100mV(10mA)			

Note 1. In the case of combined use with a shunt, please refer to the table below and specify the lead wire thickness and one-way length or the round trip resistance.

- Remarks (1) In the case of a bidirectional deflection indicator, determine the specifications according to the following.
 - In the case of a direct rating model, manufacture is possible if the larger of the right and left scales is 5A or less.
 - In the case where a shunt is externally attached, determine the scale so that the sum of the absolute values of the indicator ratings is 60mV or more for YM-210MRN and 100mV or more for LM-11MRN.
 - Example: In the case of a shunt rating of 500A and 60mV
 - Ammeter scale -500~0~+500A
 - Ammeter rating -60~0~+60mV (sum of absolute values=120mV≥60mV)
 - (2) Please make sure to read the "Safety Precautions" (pp.5-8) and the "Selection Precautions" (p.9) to assist in
 - selecting the model and use specifications suited to the application.

Table of maximum allowable values of lead wires for DC ammeter relay combined with shunt

DC ammeter relay combined with shunt								
Indicator rating (mV)	Maximum allowable resistance value of lead wire (Ω)							
60 or more, less than 75	0.73							
75 or more, less than 100	1.16							
100 or more, less than 150	1.88							
150 or more	3.33							
100 or more, less than 150	1.50							
150 or more	2.59							
	Indicator rating (mV) 60 or more, less than 75 75 or more, less than 100 100 or more, less than 150 150 or more 100 or more, less than 150							

Remarks (1) Refer to "DC ammeter combined with shunt" on p.44 regarding the round trip resistance according to the lead wire thickness and one-way length.

Lead wires for shunt connection

Lead wires for connecting an indicator with a shunt can be manufactured if specified.

The standard is: two 2mm² - 2m (one-way) 1500V heat-resistant vinyl wires (blue) for electric equipment.

Remarks (1) The customer is requested to prepare wires besides those of 2mm² cross-sectional area.

Ordering method

Symbol Standard OQuasi-standard ASpecial

Symbol	product	product	product
Reference delivery period	Immediate delivery	Within 20 days	21 to 60 days

Auxiliary power supply

С

 \cap

YM-210MRHNDA and LM-11MRHNDA do not have LOW terminals.

or 200-220V

DC voltmeters

YM-210MRNDV

LM-11MRNDV

product

product

21 to 60 days

product

Reference delivery period Immediate delivery Within 20 days

Specifications

	Rectangula	r indicators	Wide-angle	indicators				
	Upper/Lower-limit setting	Upper-limit setting	Upper/Lower-limit setting	Upper-limit setting				
Size (width × height) mm	100	×83	110×	:110				
Model name	YM-210MRNDV	YM-210MRHNDV	LM-11MRNDV	LM-11MRHNDV				
Operation principle	Movat	ble coil	Movable coil					
Accuracy (grade)	2	.5	1.5					
Scale length (mm)	7	2	175					
Weight (kg)	0	.7	1.8					
Maximum scale value Delivery period		Consumpt	tion current					
1, 50, 100V 150, 300, 500V	1r	nA	1mA					
Remarks (1) If, with a maximum scale of 500V or less, an externally mounted multiplier is desired, the GR-2 Delivery period classification								

Remarks (1) If, with a maximum scale of 500V or less, an externally mounted multiplier is desired, the GR-2 multiplier can be attached as an accessory.

(2) In the case of a bidirectional deflection indicator, manufacture is possible if the larger of the right and left scales is 500V or less.

(3) Please make sure to read the "Safety Precautions" (pp.5-8) and the "Selection Precautions" (p.9) to assist in selecting the model and use specifications suited to the application.

Connection diagram

Ordering method

The items in	must be specified.			Number of
Model name	Multiplier Scale	Cover type B	Special specifications Double scale, colored	units
TIVI-2 TOWRINDV			lines, etc.	3

Fig. 2 YM-210MRNDV and LM-11MRNDV (with GR-2 multiplier)
Auxiliary power supply too-110V or 200-220V Multiplier
Load
YM-210MRHNDV and LM-11MRHNDV do not have LOW terminals.

Symbol

Meter Relays

AC ammeters

YR-210MRNAA

LR-11MRNAA

Specifications

					Rectangula	rindiaatara		Wide-angle indicators						
				Upper/Lowe	r-limit setting	Upper-lin	nit setting	Upper/Lower-limit setting Upper-limit setting						
Siz	e (width ≻	< height)	mm		1003	×83			110>	<110				
Мо	del name			YR-210	MRNAA	YR-210	IRHNAA	LR-11N	IRNAA	LR-11M	RHNAA			
Op	eration pr	inciple			Rec	tifier			Rec	tifier				
Aco	curacy (gr	ade)			2.	5			1.	.5				
Fre	quency				50 and 60Hz									
Sca	ale length		(mm)		7	2		175						
Co	nsumptior	ו VA	(VA)		0.	2		0.1	(0.3 in the case	of expanded so	cale)			
We	ight		(kg)		0.	7			1.	.8				
ation		Maximum	scale value	Ordinary	Expanded	Ordinary	Expanded	Ordinary	Expanded	Ordinary	Expanded			
assific	Direct	100), 200, 500mA	Δ						^				
eriod c	Direct		1, 5, 10A		Δ	Δ	Δ	Δ	Δ	Δ	Δ			
ery pe	الله الله الله الله الله الله الله الله		5/5, 20/5, 30/5, 40/5, 60/5,											
d deliv	ेड्ड मुंग्रे 75/5, 100/5, 150/5, 200/5, 250/5 ,		0	Δ	0	Δ	0	Δ	0	Δ				
ndicator rating and delivery period classification	Combined with	300/5, 400/5	5, 500/5											
tor rat	nbin	Other	/5A (indicator rating 5A)	0	Δ	0	Δ	0	Δ	0	Δ			
Indica	Col	Other	/1A (indicator rating 1A)	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ			

Remarks (1) The standard expanded scale is the 3x expanded scale. A 2x expanded scale and 5x expanded scale can also be manufactured.

Delivery period classification

Reference delivery period Immediate delivery

product

product

Within 20 days

product

21 to 60 days

Symbol

(3) Please make sure to read the "Safety Precautions" (pp.5-8) and the "Selection Precautions" (p.9) to assist in selecting the model and use specifications suited to the application.

Connection diagram

(2) Error may occur due to waveform distortion.

Fig. 4 YR-210MRNAA and LR-11MRNAA

Note 1. In a low voltage circuit, grounding of the secondary side of the current transformer is unnecessary.

Ordering method

The items in must be specified.	
Indicator combined with current transformer Model name Indicator rating Scale CT ratio Cover type Special specifications YR-210MRNAA 5A 0-500A 500/5A B Double scale, colored lines, etc.	Number of units 2
•Direct indicators Model name Indicator rating Scale Cover type Special specifications Double scale, colored lines, etc. YR-210MRNAA 10A 0-10A B B Double scale, colored lines, etc.	Number of units 2

AC voltmeters

LR-11MRNAV

product

product

21 to 60 days

product

Reference delivery period Immediate delivery Within 20 days

Specifications

	_				Rectangula	r indicators			Wide-angle	e indicators			
				Upper/Lowe	r-limit setting	Upper-lin	nit setting	Upper/Lowe	r-limit setting	Upper-lir	nit setting		
Size	(wio	dth $ imes$ height)	mm		100	×83		110×110					
Mod	lel n	ame		YR-210	MRNAV	YR-210	/RHNAV	LR-11	MRNAV	LR-11M	1RHNAV		
Ope	ratic	on principle			Rec	tifier			Rec	tifier			
Accu	urac	y (grade)			2	.5			1.	.5			
Freq	luen	су					50 and	60Hz					
Scal	le le	ngth	(mm)		7	2			17	75			
Weig	ght		(kg)		0.	.7		1.8					
tion		Maximum sca			Consumption VA and delivery period classification								
and delivery period classification			ale value	Consumption VA	Delivery period classification	Consumption VA	Delivery period classification	Consumption VA	Delivery period classification	Consumption VA	Delivery period classification		
class		10, 30), 50V	0.3VA	0	0.3VA	0	0.1VA	0	0.1VA	0		
eriod	Direct	75, 1	00V	0.5VA	0	0.5VA	0	0.1VA	0	0.1VA	0		
ry pe	Ē	15	0V	0.6VA	0	0.6VA	0	0.15VA	0	0.15VA	0		
elive		30	0V	1.7VA	0	1.7VA	0	0.3VA	0	0.3VA	0		
p q	Υ	VT ratio	Scale										
			0~600V										
r rati	3300/110V ing 6600/110V	0~4500V	0.6VA	0	0.6VA	0	0.15VA	0	0.15VA	0			
Indicator rating		6600/110V	0~9000V										
pul	ပိ	Other D/110V	VT ratio \times 150V										
Rema	irks	(1) Error may occ	our due to waveform						very period clas	ssification			

(2) Please make sure to read the "Safety Precautions" (pp.5-8) and the "Selection Precautions" (p.9) to assist in selecting the model and use specifications suited to the application.

Connection diagram

Symbol

Note 1. In a low voltage circuit, grounding of the secondary side of the instrument voltage transformer is unnecessary.

Ordering method

The items in _____ must be specified.

Indicator combine	d with instrument voltage	ge transformer			Number of
Model name	Indicator rating Scale	VT ratio	Cover type	Special specifications	units
YR-210MRNAV	150V 0-9000V	6600/110V	В	Double scale, colored lines, etc.	2
Direct indicators Model name	Indicator rating Scale	Cover type S	pecial specificat	ions	Number of units
YR-210MRNAV	300V 0-300V	— в —	Double scale, lines, et		2

Wattmeters

Varmeters

YM-210MRNW

LM-11MRNW

Specifications

								Wattmeters						Varmeters									
				R	lectang	gular in	dicator	s	V	Vide-a	ngle in	dicator	5	R	ectang	ular in	dicator	s	V	Vide-ar	ngle in	dicators	5
				Upper/Lov	ver-limit se	etting Up	per-limit	setting	Upper/Lov	ver-limit se	etting Up	per-limit	setting	Upper/Lower-limit setting Upper-limit setting			Upper/Lower-limit setting Upper-limit setting			setting			
Size	e (wio	dth $ imes$ height)	mm		1	100×8:	3		110×110					1	00×8	3			1	10×11	0		
Mor	del na	amo		YN	И-210		YM-2	10	LM-11 LM-11			YN	/-210		YM-2	10	LI	VI-11		LM-1	1		
WIOC		ame		М	RNW		MRHN	w	Μ	RNW		MRHN	w	MR	NVAR	1	MRHN	/AR	MR	NVAR		MRHN\	/AR
Оре	eratio	on principle						Trans	ducer									Trans	ducer				
Acc	urac	y (grade)				2.5			1.5							2.5					1.5		
Free	quen	су							50 and					60Hz									
Sca	le lei	ngth	(mm)			72			175				72					175					
Weight (kg)					0.7			1.8				0.7						1.8					
tion		Rating		Cons	umptic	on VA	~		Cons	Consumption VA		~		Cons	umptio	n VA	~	,	Cons	umptio	n VA	~	
ifica	Circuit		Indicator	Potage circuit		IOSS	iod	et-	Voltage	circuit	rcuit 🖁	iod ver	et-	Voltage	circuit	IOSS	ver) iod	et-	Voltage	circuit	IOSS	iod ver	
class	Cir	Secondary	rating (Po)	Voltage circuit	l1	12	Accessory	Delivery period	Voltage circuit	l1	12	Accessory	Delivery period	Voltage circuit	l1	12	Accessory	Delivery period	Voltage circuit	l1	2	Accessory	Delivery period
riod		rating	(kW`or kvar)	30	lз	12	◄		≥°	lз	12	<		30	lз	12	<		≥°	lз	12	۷	
ry pe	1-phase 2-wire	110V 5A	0.4~0.6	3	3.	.2	T-150	Δ	3	3.	.2	T-150	Δ	_	_	_	_	_	_	_	_	_	_
elive		220V 5A	0.8~1.2	6	3.	.2	1 100	Δ	6	3.	.2	1 100	Δ										
nd de	3-phase 3-wire	110V 5A	0.8~1.2	1.5	1.	.6	T-150	0	1.5	1.	.6	T-150	0	1.5	1.2	2.4	T-150	0	1.5	1.2	2.4	T-150	0
ng al	3-ph 3-v	220V 5A	1.6~2.4	3	1.	.6	1-130	0	3 1.6		1-130	0	3	1.2	2.4	1-130	0	3	1.2	2.4	1-130	0	
r rati	9	$\frac{110}{\sqrt{3}}$ /110V 5A	0.8~1.2	1	1.2	2.4	T-150	Δ	1	1.2	2.4	T-150	\triangle	1.5	1.2	2.4	T-150	\triangle	1.5	1.2	2.4	T-150	\triangle
Indicator rating and delivery period classification	3-phase 4-wire	110/190V 5A	1.4~2.0	1	1.2	2.4	T-150	Δ	1	1.2	2.4	T-150	Δ	1.5	1.2	2.4	T-150	Δ	1.5	1.2	2.4	T-150	\triangle
Indi	έ, j	220/380V 5A	2.8~4.0	1	1.2	2.4	T-150	Δ	1	1.2	2.4	T-150	Δ	—	_	_	_	_	_	_	_	—	—

Remarks (1) Refer to the "Wattmeter Scale Selection Reference Table" (p.54) concerning the manufacturable maximum scale value of a wattmeter relay.

(2) The varmeter relays are bidirectional deflection indicators with "Zero" as the central division and with LEAD at the left side and LAG at the right side. Refer to the "Varmeter Scale Selection Reference Table" (p.60) concerning the manufacturable maximum scale value of a varmeter relay.

(3) Unidirectional deflection indicators can also be manufactured for varmeter relays. Please specify LEAD or LAG (standard is LAG).

(4) 1A current rating models are also manufactured (the consumption VA is similar to that of a 5A model).
(5) The T-150 rectifier is a dedicated accessory (non-compatible accessory) and thus cannot be used in combinations besides those specified for the indicators. The distance between the indicator and the T-150 rectifier must be 5m or less or the round trip lead wire resistance must be 0.5Ω or less.

(6) The weight of the T-150 rectifier is approximately 1kg.

(7) Please make sure to read the "Safety Precautions" (pp.5-8) and the "Selection Precautions" (p.9) to assist in selecting the model and use specifications suited to the application.

Delivery period classification

Symbol	©Standard	○Quasi-standard	∆Special
Symbol	product	product	product
Reference delivery period	Immediate delivery	Within 20 days	21 to 60 days

Ordering method

Outer dimensions of accessory

Terminal layouts

Fig. 3 For 3-phase, 4-wire system wattmeter

C

Note 2

Fig. 2 Wattmeter relay (3-phase, 3-wire system)

T-150 rectifier for 3-phase, 3system wattme

⊕

Fig. 2 For 3-phase, 3-wire system wattmeter

Fig. 4 For 3-phase, 3-wire system varmeter For 3-phase, 4-wire system varmeter

100-110V ↓ or 200-220V

Connection diagrams

Fig. 3 Wattmeter relay (3-phase, 4-wire system)

Note 1. YM-210MRHNW, LM-11MRHNW, YM-210MRHNVAR, and LM-11MRHNVAR do not have LOW terminals. **Note 2.** For low-voltage circuits, grounding of the secondary sides of the instrument voltage transformer and current transformer is unnecessary.

Meter Relays

Power factor meters

YM-210MRNPF

I M-11MRNPF

Specifications

Mechanical Indicators

						Recta	angula	r indica	ators							Wide	e-angle	e indica	itors			
			Upper/Low	er-limit setting	Upper	-limit s	setting	Upper/Lo	wer-limit se	etting Up	per-limit	setting	Upper/Lov	ver-limit se	tting Up	per-limit	setting	Upper/Lov	ver-limit set	ting Up	per-limit	setting
Siz	e (width $ imes$ heig	ht) mm					100	×83									110>	<110				
Mo	del name		YM-21	0MRNPF	YM-2	YM-210MRHNPF YM-210MRNPFU YM-210MRHNPFU					LM-11MRNPF LM-11MRHNPF				LM-11	MRNPF	J LN	/I-11MRH	INPFU			
Op	eration principle	9					Trans	ducer					Transducer									
Acc	curacy (grade)						5	5					5									
Sca	ale					LEA	D0.5~	1~0.5L	AG				LEAD0.5~1~0.5LAG									
Fre	quency		50 and 60Hz 50 or 60Hz 50 and 60Hz 50 or 60H									Hz										
Sca	ale length	(mm)	m) 72 175																			
We	ight	(kg)					0.	.7									1.	.8				
tion		Rating	Consumption VA		VA	2 >		Consumption V		n VA	y	~	Cons	umptio	n VA	~	~	Cons	umptio	n VA	~	
sifica	Circuit		Bi≝ Voltage circi	cuit	SSO	iver	8=	Voltage	circuit	sso	iod	8±	Voltage	circuit	sso	iod	ette	Voltage	circuit	sso	iod	
delivery period classification	Circuit		Voltage circuit	l1 3	12	Accessory	Delivery period	Voltage circuit	l1 3	l 2	Accessory	Delivery period	Voltage circuit	l1 I3	l 2	Accessory	Delivery period	Voltage circuit	l1 3	12	Accessory	Delivery period
ery p	3-phase 3-wire	110V 5A	1	1	-	100							1	1		T 100						
	(balanced)	220V 5A	2	1		100	Δ		_		_	_	2	1		T-100	Δ		_		_	
g and	3-phase 3-wire	phase 3-wire 110V 5A 1 2				Δ						1	2		T-150	Δ						
ratinç	(unbalanced)	220V 5A			-	_	_	2 2		1-150			_		_	_	2	2		1-150		
Indicator rating and	3-phase 4-wire	V3,		2	T-150	Δ			_	2	1	2	T-150	Δ								
Indi	(balanced)	(balanced) 110V/190V 5A 2 1 2 T-150 /		Δ		_		_	_	2	1	2	T-150	Δ								

Remarks (1) Use an input current of 1/5 or more than the rated current. The smaller the input current, the larger the error.

- (2) 1A current rating models can also be manufactured (the consumption VA is similar to that of a 5A model).
- (3) The T-100 and T-150 rectifiers are dedicated accessories (non-compatible accessories) and thus cannot be used in combinations besides those designated for the indicators.

The distance between the indicator and the T-100 or T-150 rectifier must be 5m or less or the round trip lead wire resistance must be 0.5Ω or less. (4) Weight of accessory T-100 rectifier: approx. 1.4kg

- T-150 rectifier: approx. 1.7kg
- (5) Please specify the frequency for YM-210MRNPFU and LM-11MRNPFU.
- (6) Models for balanced circuits cannot be used with unbalanced loads. Models for unbalanced loads can be used with balanced circuits.
- (7) The mounting order for the VT and CT does not have to be considered. (8) Please make sure to read the "Safety Precautions" (pp.5-8) and the "Selection
- Precautions"(p.9) to **Delivery period classification** assist in selecting the

accier in conceang and	
model and use	
specifications suited to	
the application.	Refer

Outer dimensions of accessory

Ordering method

J							(
The items in	must be spe	cified.					Number of
Model name	Phase-wire system	Indicator rating	Scale	Cover type	Frequency	Special specifications	units
YM-210MRNPFU	3P3W	110V 5A	LEAD0.5-1-0.5LAG	В	50Hz	Colored lines, colored bands, etc.	3
_					1		

Connection diagram

Frequency meters

YM-210MRNF

LM-11MRNF

Specifications

			F	Rectangular	· indicators	3		Wide-angle i	ndicators	3		
			Upper/Lower-limit s	setting	Up	per-limit setting	Upper/Lower-limit setting Upper-limit setting					
Siz	e (width $ imes$ heig	ht) mm		100×	<83			110×1	10			
Мо	del name		YM-210MRNF	M-210MRHNF	LM-11MRNF	-	L	M-11MRHNF				
Op	eration principle)		Transd	lucer			Transdu	icer			
Acc	curacy (grade)			1				1				
Sca	ale length	(mm)		72	2			175				
We	ight	(kg)		0.7	7		1.8					
ation	Circuit voltage Scale		Consumption VA	Acces	sory	Delivery period	Consumption VA	Accessory		Delivery period		
ssifice		45~55Hz	1			Δ	1			Δ		
od cla	110V	55~65Hz	1			Δ	1			Δ		
y peri		45~65Hz	1	T-10	00	Δ	1	T-100	C	Δ		
eliven		45~55Hz	1.5			Δ	1.5			Δ		
and d	Circuit voltage Scale 45~55Hz 55~65Hz 110V 55~65Hz 45~55Hz 45~55Hz 220V 45~55Hz 55~65Hz 45~55Hz 45~55Hz 45~55Hz 220V 55~65Hz 45~55Hz 45~55Hz 45~65Hz 45~65Hz 45~65Hz 45~65Hz 45~65Hz 45~65Hz		1.5			Δ	1.5			Δ		
ating			1.5			Δ	1.5			Δ		
cator r	Specia	l scale				45~75Hz,	170~190Hz					
India	Opecia	1 00010	85~110Hz, 360~440Hz									

Remarks (1) Allowable operating voltage range - for 110V: 90~130V; for 220V: 180~260V

(2) The T-100 rectifier is a dedicated accessory (non-compatible accessory) and thus cannot be used in combinations besides those specified for the indicators. The dictance between the indicator and the 1 100 rectifier must be 5m or less or the round trip.

The distance between the indicator and the T-100 rectifier must be 5m or less or the round trip lead wire resistance must be 0.5Ω or less.

(3) Weight of accessory T-100 rectifier: approx. 0.9kg

(4) Please make sure to read the "Safety Precautions" (pp.5-8) and the "Selection Precautions" (p.9) to assist in selecting the model and use specifications suited to the application.

Outer dimensional drawings of accessory

Connection diagram

Delivery period classification

product

Reference delivery period Immediate delivery Within 20 days

Symbol

product

product

21 to 60 days

Note 1. In a low voltage circuit, grounding of the secondary side of the instrument voltage transformer is unnecessary.

Meter Relays

Receiving indicators

YM-210MRNRI

LM-11MRNRI

Specifications

_								
				Rectangular	r indicators	Wide-angle indicators		
				Upper/Lower-limit setting	Upper-limit setting	Upper/Lower-limit setting	Upper-limit setting	
Siz	e (width $ imes$ height	ght)	mm	100>	<83	110×	:110	
Mo	del name			YM-210MRNRI	YM-210MRHNRI	LM-11MRNRI	LM-11MRHNRI	
Ope	eration princip	le		Movab	le coil	Movab	le coil	
Acc	uracy (grade)			2.	5	1.	5	
Sca	ale length	le length (mm) 72 175		5				
We	ight		(kg)	0.	7	1.4	8	
/ery	Indica	ator rating	Delivery period	Internal resistance (Ω) or		consumption current (mA)		
deliv		±0.5mA	Δ	70	Ω	650Ω		
g and ssific	Current input	1mA	0	70	Ω	650Ω		
d cla		10mA	Δ	30	2	7Ω		
cator	Indicator rating Delivery Indicator rating period period period Current input ±0.5mA 1mA ○ 10mA △ 420mA (zero-suppressed) ○ Voltage input 1.5.10V ○		2.5	Ω	10Ω			
Indi	Voltage input	1, 5, 10V	0	1m	A	1m	A	

Remarks (1) Refer to p.105 onward of this catalog in regard to transducers to be combined with a receiving indicator.

- (2) In the case of an electrical quantity scale (A, V, W, var, cos \u03c6, Hz), the AC/DC symbol and 3-phase circuit symbol are not indicated on the scale. The symbol of the input quantity of the receiving indicator is indicated.
- (3) Please make sure to read the "Safety Precautions" (pp.5-8) and the "Selection Precautions" (p.9) to assist in selecting the model and use specifications suited to the application.

Connection diagram examples

 +
 MAIMB
 Auxiliary power

 supply

 T-51TP

 Transducer

standard resistor

िठी

GB-2

Resistance

When performing inspections/adjustments, remove the resistance bulb and connect the GR-2 standard resistor as indicated by the broken lines.

Auxiliary power supply

or 200-220V

Note 1. YM-210MRHNR1 and LM-11MRHNR1 do not have LOW terminals.

Note 2. In a low voltage circuit, grounding of the secondary side of the current transformer is unnecessary.

Ordering method The items in must be specified. Number of Model name Scale and units Cover type Indicator rating Special specifications units Double scale, colored lines, etc YM-210MRNRI 2 (0-100) % В FS4-20mA (0-300)A

Fig. 2 Combination with temperature transducer

Symbol

Reference delivery period

Delivery period classification

product

Immediate delivery

Standard OQuasi-standard

product

Within 20 days

∆Special

product

21 to 60 days

Precautions When Handling Meter Relays

•For meter relays, always keep the auxiliary power supply on. The consequences of turning the auxiliary power supply on/off are described below.

 $\overline{\nabla}$

(Note) *Method for restoring normal operation after restoration from power interruption.

Turn the setting knob to move the needle setting in the order of (1), (2) as shown below. After this, reset the needle setting.

Relay output	Lowe	r limit	Upper limit			
Malfunction details	Relay output is ON (when it should be OFF)	Relay output is OFF (when it should be ON)	Relay output is ON (when it should be OFF)	Relay output is OFF (when it should be ON)		
Action	Image: Constraint of the second s	Lower limit Upper limit Needle	Lower limit Needle	Lower Upper A limit limit Needle		

•If an inrush current that is generated when a motor is started exceeds the setting value even instantaneously, the relay operates during that state.

To prevent unnecessary influence of the relay during such a transition state of the input signal, use a timer to release the output relay terminals for a fixed time during starting to prevent unnecessary operation of a control device.

MC : auxiliary contact of electromagnetic switch for starting motor

T : timer L1, L2 : control device

Indicators with Maximum and Minimum Needles

These indicators have marker needles indicating the maximum and minimum values. The response time of these indicators is extremely fast.

- •The needle response time is 0.1s (0.3s for DC input).
- •The maximum value marker needle, minimum value marker needle and driving needle are red, green and black, respectively.
- •Using the indicators in combination allows the marker needles to be reset to the driving needle both manually and electromagnetically.

LM-11ZNAA

LM-11YNAV

Specifications

		DC	C ammeter		AC ammeter	DC voltmeter	Receiving indicator	
	Size (width $ imes$ height) mm	1	110×110		110×110	110×110	110×110	
Model name	With maximum needle	LN	/I-11ZNDA		LM-11ZNAA	LM-11ZNAV	LM-11ZNRI	
Model	With maximum and minimum needles	LN	/I-11YNDA		LM-11YNAA	LM-11YNAV	LM-11YNRI	
	Operation principle	M	ovable coil		Rec	tifier	Movable coil	
	Accuracy (grade)	1.5 (ma	arker need	le: 2)	1.5 (marke	r needle: 2)	1.5 (marker needle: 2)	
	Scale length (mm)		175	175 175		175		
	Marker needle reset	Manual and	electromag	netic marke	er needle reset (electromagnetic mar	ker needle reset voltage: 100-110VA	C/DC ±10%); consumption VA: 6VA	
	Frequency		_		50 or 60Hz	50 or 60Hz	—	
	Weight (kg)		3.2		3.2	3.2	3.2	
rating	Rated voltage or	5, 10, 15	1, 3, 5	15A Note 1	1, 5, 10, 15, 20, 30A	100, 110, 150, 190	DC 5mA	
	rated current	20mA	10, 15A	or more	1, 3, 10, 13, 20, 30A	259, 300V	DC4-20mA	
Indicator	Consumption VA	40Ω (20mA)	300mV	300mV	1VA	5VA	650Ω (DC5mA), 100Ω (DC4-20mA)	
Ind	Response time		0.3s		0.1s	0.1s	0.3s	
	Accessory		_		T-150	T-150	—	
D	elivery period classification		\triangle		0	0	Δ	

Note 1. Models with a rating exceeding 15ADC are provided with an externally mounted 300mV shunt. Additionally, in ordering, please specify the resistance value so that the lead wire round trip resistance value is 0.8Ω or less.

Remarks (1) Refer to p.90 and p.92 if an AC voltmeter is to be used as a ground voltmeter.

(2) The T-150 rectifier is a dedicated accessory (non-compatible accessory) and thus cannot be used in combinations besides those specified for the indicators. The distance between the indicator and the T-150 rectifier must be 5m or less or the round trip lead wire resistance must be 0.5Ω or less.

- (3) Set the duration of supplying electricity to the electromagnetic marker needle resetting terminal to within 5s. Additionally, use a switch that "opens" when released.
- (4) The overload capacity is 2 times the rated current for 2s.
- (5) For an AC ammeter or AC voltmeter, please specify the frequency.
- (6) An expanded scale cannot be manufactured for an AC ammeter.
- (7) Do not use with a circuit through which an inrush current or other current that exceeds the rating flows.
- (8) Please make sure to read the "Safety Precautions" (pp.5-8) and the "Selection Precautions" (p.9) to assist in selecting the model and use specifications suited to the application.

Outer dimensions

Ordering method

The items in _____ must be specified.

•AC ammeter/AC voltmeter

							Number of
Model name	Indicator rating	Scale	CT ratio or VT ratio	Cover type	Frequency	Special specifications	units
LM-11ZNAA	5A	0-300A	300/5A	В	50Hz	Colored lines, colored bands, etc.	2

Receiving indicator

j	-				Number of
Model name	Scale	Cover type	Indicator rating	Special specifications	units
LM-11YNRI	0-1200kW	В	FS5mA	Double scale, colored lines, etc.	 2

Delivery period classification

•	Symbol	©Standard	○Quasi-standard	∆Special
	Symbol	product	product	product
	Reference delivery period	Immediate deliverv	Within 20 days	21 to 60 days

Outer dimensions of accessory

Connection diagrams

Note 1. Connect if an electromagnetic marker needle resetting circuit is to be provided. Additionally, use a switch that "opens" when released. **Note 2.** In a low voltage circuit, grounding of the secondary sides of the instrument voltage transformer and current transformer is unnecessary.

•Using LM-11ZNAV or LM-11YNAV AC voltmeter as a ground voltmeter

Shown below are connection examples of the LM-11ZNAV AC voltmeter with the maximum needle (or LM-11YNAV AC voltmeter with maximum/minimum needles) as a ground voltmeter.

Ordering method

Earth-leakage Detectors

- An earth-leakage detector detects an earth fault of an ungrounded 3-phase 3-wire circuit and enables the degree of the earth fault and the ground phase to be judged by deflection of a needle.
 With the instrument voltage transformer, a Y connection is formed at the primary side to directly ground the
- neutral point and a \triangle connection with one corner open is formed at the secondary side (or tertiary side).

LM-11NGD

M5 terminal scre

4-M5

 $4 - \phi 6 \xrightarrow{45} 45$ Panel hole opening dimensions (mm)

12 12

M4 te

ninal s

∰`

₽**| (** ()

LM-11NGD

C

-6 3

(A2

T-150 rectifie

-0 õ

(1) 2 3

Auxiliary power supply

6

1.2

Outer dimensions of accessories

T-150 rectifier (for earth-leakage detector)

11.5

130

+ 00 0 00 +

a d b e c f

+ 0000 +

12 12

Connection diagrams

2 3 A1 A2 DUTPUT ALARM

Outer dimensions

Specifications

	Wide-angle indicator					
Size (width $ imes$ height) mm	110×110					
Model name		LM-1	1NGD			
Operation principle		Rec	tifier			
Zero-phase voltage	Vaf=	110V	Vaf=	190V		
Indicator rated voltage	63.5V	86.6V	110V	150V		
Frequency		50 or	60Hz			
Consumption VA	1\	/A	2\	/A		
Weight (kg)	0.6					
Accessory	T-150 rectifier					
Delivery period classification		L	7			

Delivery period classification

Symbol	Standard product	OQuasi-standard product	
Reference delivery period	Immediate delivery	Within 20 days	21 to 60 days

Remarks (1) Please specify the VT ratio of the EVT used in accordance with the following examples.

 $\frac{6600}{\sqrt{3}} / \frac{110}{\sqrt{3}} / \frac{110}{3}$ V (specification example in the case where Vaf=110V) 6600 110 190

 $\frac{6600}{\sqrt{3}}$ / $\frac{110}{\sqrt{3}}$ / $\frac{190}{3}$ V (specification example in the case where Vaf=190V)

- Remarks (2) An alarm contact that is activated by the voltage relay when the zero-phase voltage (Vaf) is 50 to 75V (Vaf=190V) is standard equipment. Contact capacity: 100VAC, 1A (resistive load).
 - (3) In the case of using a VT that is not specially designed as a zero-phase transformer, a harmonics suppressing resistor (dummy load) is connected between open and delta. The resistor is selected according to the load of the voltage transformer and should comply with the following:
 - $\left\{ 200W \ 200\Omega \ (200\Omega \pm 10\%) \ \text{when Vaf=190V} \right\}$
 - 150W 120Ω (120Ω±10%) when Vaf=110V \int
 - (4) Be careful of the following matters in using this indicator for telemetry. ① Please specify the resistance value if the lead wire resistance between the rectifier
 - and the meter exceeds 15Ω (one-way).
 There are three communicating lines between the rectifier and the meter (not including the alarm circuit), and the differences among the resistance values of these lines must be 15Ω or less.
 - (5) Please specify the frequency.

(6) Please make sure to read the "Safety Precautions" (pp.5-8) and the "Selection Precautions" (p.9) to assist in selecting the model and use specifications suited to the application.

Ordering method

91

Connection and VT ratio of EVT to be combined with a ground voltmeter (LM-11ZNAV or 11-YNAV) and an earth-leakage detector (LM-11NGD)

Generally, an EVT with which the zero-phase tertiary voltage in the 1-wire ground state is 110V (or 190V) is used in a YY \triangle (star-star-delta) connection. Although VAf is the input voltage of the ground voltmeter, the respective line voltages of the \triangle connection are input in addition to Vaf into an earth-leakage detector.

Note. With an arrangement without the tertiary winding in the above diagram, the voltage at the open end resulting from a secondary winding is considered as the zero-phase tertiary voltage.

•Scales of a ground voltmeter (LM-11ZNAV or 11-YNAV) and an earth-leakage detector (LM-11NGD) and the VT ratio

The earth-leakage detector is used in combination with an $YY \triangle$ -connected EVT, and this table shows the relationship between the line voltage VL-L and the scale and the VT ratio.

Circuit voltage	Indicator maximum		VT ratio (examples)	Zero-phase voltage	LM-11ZNAV	LM-11YNAV	LM-1	1NGD
V	scale value	When three 1-p	phase EVTs are used	When one 3-phase EVT is used	(Vaf)	Indicator	rating (V)	Indicator rating	Alarm relay operating
VL—L	(V)	Without tertiary winding	With tertiary winding	With tertiary winding	(vai)	When 3 units are combined	In the case of 1 unit	(V)	voltage (V)
	600	$\frac{440}{\sqrt{3}}$ / $\frac{110}{3}$	$\frac{440}{\sqrt{3}}$ / $\frac{110}{\sqrt{3}}$ / $\frac{110}{3}$	440 / 110 / <u>110</u> <u>3</u>	110	86.6	150	86.6	30~50
440	000	$\frac{440}{\sqrt{3}}$ / $\frac{190}{3}$	$\frac{440}{\sqrt{3}}$ / $\frac{110}{\sqrt{3}}$ / $\frac{190}{3}$	440 / 110 / <u>190</u> <u>3</u>	190	150	259	150	55~75
440	440	$\frac{440}{\sqrt{3}}$ / $\frac{110}{3}$	$\frac{440}{\sqrt{3}}$ / $\frac{110}{\sqrt{3}}$ / $\frac{110}{3}$	440 / 110 / <u>110</u> <u>3</u>	110	63.5	110	63.5	30~50
	440	$\frac{440}{\sqrt{3}}$ / $\frac{190}{3}$	$\frac{440}{\sqrt{3}}$ / $\frac{110}{\sqrt{3}}$ / $\frac{190}{3}$	440 / 110 / <u>190</u> <u>3</u>	190	110	190	110	55~75
	4500	$\frac{3300}{\sqrt{3}}$ / $\frac{110}{3}$	$\frac{3300}{\sqrt{3}}$ / $\frac{110}{\sqrt{3}}$ / $\frac{110}{3}$	3300 / 110 / <u>110</u> 3	110	86.6	150	86.6	30~50
3300		$\frac{3300}{\sqrt{3}}$ / $\frac{190}{3}$	$\frac{3300}{\sqrt{3}}$ / $\frac{110}{\sqrt{3}}$ / $\frac{190}{3}$	3300 / 110 / <u>190</u> 3	190	150	259	150	55~75
0000		$\frac{3300}{\sqrt{3}}$ / $\frac{110}{3}$	$\frac{3300}{\sqrt{3}}$ / $\frac{110}{\sqrt{3}}$ / $\frac{110}{3}$	3300 / 110 / <u>110</u> 3	110	63.5	110	63.5	30~50
	3300	$\frac{3300}{\sqrt{3}}$ / $\frac{190}{3}$	$\frac{3300}{\sqrt{3}}$ / $\frac{110}{\sqrt{3}}$ / $\frac{190}{3}$	3300 / 110 / <u>190</u> 3	190	110	190	110	55~75
	9000	$\frac{6600}{\sqrt{3}}$ / $\frac{110}{3}$	$\frac{6600}{\sqrt{3}}$ / $\frac{110}{\sqrt{3}}$ / $\frac{110}{3}$	6600 / 110 / <u>110</u> <u>3</u>	110	86.6	150	86.6	30~50
6600	9000	$\frac{6600}{\sqrt{3}}$ / $\frac{190}{3}$	$\frac{6600}{\sqrt{3}} \ / \ \frac{110}{\sqrt{3}} \ / \ \frac{190}{3}$	6600 / 110 / <u>190</u> <u>3</u>	190	150	259	150	55~75
0000	6600	$\frac{6600}{\sqrt{3}}$ / $\frac{110}{3}$	$\frac{6600}{\sqrt{3}}$ / $\frac{110}{\sqrt{3}}$ / $\frac{110}{3}$	6600 / 110 / <u>110</u> <u>3</u>	110	63.5	110	63.5	30~50
	0000	$\frac{6600}{\sqrt{3}}$ / $\frac{190}{3}$	$\frac{6600}{\sqrt{3}} \ / \ \frac{110}{\sqrt{3}} \ / \ \frac{190}{3}$	6600 / 110 / <u>190</u> <u>3</u>	190	110	190	110	55~75

There are two types of indicator maximum scale values, the nominal line voltage VL-L and 1.36×VL-L. (1.36 is the value in the case of 150V/110V.)

•Regarding the indicator rating

- ○In the case of combining three LM-11ZNAV (LM-11YNAV) units or in the case of LM-11NGD The indicator rating is the line voltage at the △ connection side when the primary side is in the 1-wire ground state (however, the fault phase is excluded).
 ○In the case of using one LM-11ZNAV (LM-11YNAV) unit The indicator rating is the voltage corresponding to the zero-phase voltage Vaf.
- •The zero-phase voltage Vaf is the voltage at the open end of the open \triangle connection when the primary side is in the 1-wire ground state.
- •The alarm relay operation voltage is related only to the zero-phase voltage (that is, the VT ratio) and has no relationship with the indicator scale.

Synchroscopes

- A synchroscope indicates the synchronization point (scale center) when the frequencies and the phases at a generator side and a bus line side are matched.
- •If the frequencies of both sides are equal, the position at which the needle is stationary indicates the phase difference between the two.
- •When the generator side (starting side) frequency is fg and the bus line side (operating side) frequency is fg, the direction of rotation of the needle is as follows:
 - When fg=fB The needle is stopped.
 - When $f_{G}>f_{B}$ The needle rotates in the FAST direction.
 - When $f_G < f_B$ The needle rotates in the SLOW direction.

L1-11NSY

Specifications

Mechanical Indicators

			Wide-angle indicators				
Size (width >	< height) mm		110×110				
Model	name		LI-11	NSY			
Operation	n principle		Movable iron c	ore (induction)			
Accurac	y (grade)		Ę	5			
Frequ	uency		50Hz o	or 60Hz			
Weigł	nt (kg)	2.0					
Indicat	or type	1-pł	nase	3-phase			
Rated v	oltage V	110	220	110	220		
Consumption VA	Generator side	4	8	4	8		
Consumption VA	Bus line side	4	8	4	8		
Accessory		T-150	shunt	T-150) resistor		
Delivery period	d classification	Δ	Δ	Δ	Δ		
Special sp	ecification		With phase angle sca	le (delivery period: \triangle)			

Remarks (1) The pull-in and dropout frequencies are 2 to 3Hz. That is, although the needle rotates up to a frequency

difference of 2 to 3Hz according to the difference and indicates whether the generator (or starting side) is slow or fast, when the difference becomes large, the needle moves slightly without rotating.

Symbol Standard Quasi-standard ASpecial product product product product			
Sumbol	©Standard	OQuasi-standard	∆Special
Symbol	product	product	product
Reference delivery period	Immediate delivery	Within 20 days	21 to 60 days

- (2) The needle does not rotate when the frequency difference is large. In this case, judgments should be made using the light shown in the connection diagram. Please note that the light is not supplied; it is to be prepared by the customer if required.
- (3) The specifications are continuous rating specifications.
- (4) In a state where electricity is not supplied, the needle indicates an arbitrary position exceeding ±30° from the synchronization point.
- (5) The lead wire length from the main synchroscope unit to an accessory device must be set to 5m or less.
- (6) Please make sure to read the "Safety Precautions" (pp.5-8) and the "Selection Precautions" (p.9) to assist in selecting the model and use specifications suited to the application.
- (7) The scale must be specified. The standard specification is: SLOW-FAST.

Phase angle scale

- •An indicator with phase angle scale, in which an angle scale centered at the synchronization point (scale center) is drawn, can also be manufactured.
- •The needle indicates the phase difference between the generator side and bus line side. The indicator can thus be used for measuring the phase difference when the needle is stationary or for timing of startup.
- •The standard phase angle scale is a 30° forward/backward scale.

SINCLASSCORE

L1-11NSY with phase angle scale

Outer dimensions

Outer dimensions of accessories

Connection diagrams

phase splitter

Ē

-A (A

¢ چ (B

00

Fig. 4 1-phase system; 220V

side

(2) Regarding light connection

- When combined with a VT, the same phase at the secondary side of the VT must be grounded.
- If a VT is not used (direct case), connect the same phases shown in the connection diagrams.
- The light will not flash if not connected.
- (3) Regarding light rating
 - A value twice the circuit voltage is generated between the light connection terminals (between L1 and L2). If a light of the same rating as the circuit voltage is to be used, connect two lights in series.

Example synchroscope light connection (for reference)

Ordering method

Dual-element Indicators

Two measured quantities are indicated by the same indicator.

- •Two independent movable coil indicators are incorporated, and by combination with a detector and a transmitter, two measured quantities, such as voltage and current, water level and water quantity, power and reactive power can be indicated by the same indicator to enable reduction in panel space. The indicator can be combined with power transducers to enable measurement of various electrical quantities.
- •The needle colors are black and red (the front side needle as viewed from the front face of the indicator is black and the rear side needle is red).

LM-11NE

Specifications

Size (width >	< height) mm	110×110 wide-angle indicator			
Model	name	LM-11NE			
Operation	n principle	Movable coil			
Accuracy	y (grade)	1.5			
Scale len	gth (mm)	175			
Weigh	nt (kg)	1.0			
Indicator r	ating (DC)	Approximate internal resistance value (Ω) Delivery period			
	1mA	1200			
Both elements have	5mA	50			
same ratings	10mA	25			
	4 - 20mA	15			
Respective elements	1/5mA	1mA side: 1200, 5mA side: 50			
have different ratings 5/10mA		5mA side: 50, 10mA side: 25	0		
nave unerent ratings	10/1mA	10mA side: 25, 1mA side: 1200			

Delivery period classification

Symbol	©Standard	○Quasi-standard	∆Special
Symbol	product	product	product
Reference delivery period	Immediate delivery	Within 20 days	21 to 60 days

Remarks (1) Indication accuracy: 15% of full scale

- (2) Relative deviation between the two needles: 2.0% of full scale
- (3) Withstand voltage
- Between electrical circuit as a whole and outer casing: 2210VAC, 5s
- Mutually between input circuits (indicator alone): 50V AC, 1min
- (4) In the case of a double scale, each scale is drawn in the same color as the corresponding needle.
- (5) In the case of an electrical quantity scale (A, V, W, var, cosφ, Hz), the AC/DC symbol and 3-phase circuit symbol of the scale (primary side) are not indicated. The symbol of the receiving indicator is indicated.
- (6) Please make sure to read the "Safety Precautions" (pp.5-8) and the "Selection Precautions" (p.9) to assist in selecting the model and use specifications suited to the application.

Usage example

Connection diagram

Note 1. For low-voltage circuits, grounding of the secondary side of the instrument voltage transformer is unnecessary.

Ordering method

Applications

- Optimal as indicators for various process controls in power generating/transforming systems, steel plants and chemical plants, as well as general panel indicators.
- •Useful for changing the panel appearance and significantly reducing panel size.
- •Level differences of measured values can be compared easily by coupled mounting of indicators.

Products list

- ●There are four types of outer size (length) 100mm, 130mm, 150mm and 170mm.
- •All models are available in vertical and horizontal mount specifications.
- •For the FM model, both 1- and 2-needle meters can be manufactured.

Indicator type	C	Outer dimensions	100×30mm	130×36mm	150×40mm	170×42mm
	Vertical mount	1 needle	FM-210SN	FM-213SN	FM-215SN	FM-217SN
DC indicator FM model		2 needles	FM-210DN	FM-213DN	FM-215DN	FM-217DN
	Horizontal mount	1 needle	FM-210SN	FM-213SN	FM-215SN	FM-217SN
	nonzoniai mouni	2 needles	FM-210DN	FM-213DN	FM-215DN	FM-217DN
AC indicator FR model	Vertical mount	1 needle	FR-210SN	FR-213SN	FR-215SN	FR-217SN
	Horizontal mount	1 needle	FR-210SN	FR-213SN	FR-215SN	FR-217SN

Standard specifications in common

Item	Specification
Standards	Direct-acting electrical indicators JIS C 1102-2
Accuracy (grade)	1, 1.5 or 2.5
Operating temperature range	-5°C~50°C (reference temperature: 23°C)
Operating humidity range	At a relative humidity of 30~70%, there are no adverse effects on indications.
Mounting attitude	Vertical (the scale plate is vertical with respect to a horizontal surface)
Insulation test	$10M\Omega$ or more at a test voltage of 500VDC (between electrical circuit and outer casing)
Voltage test	2210VAC for 5s (between electrical circuit and outer casing), 500VAC for 1min (between elements in a 2-needle model)
Crest factor of input signal	Sine wave $(\sqrt{2})$
Measurement category	CAT II (category of measurement performed inside a building facility)
Pollution degree of usage environment	2 (of a level where only a non-conducting pollution occurs)
Installation altitude	2,000m or less
Usage location	Indoors
Mounting panel	Metal panel
Storage temperature	-20°C~60°C
Scale plate	Background color: white
Needle	Large triangular needle (red)
Cover	Acrylic resin (with antistatic treatment applied)
Case	Heat-resistant ABS resin
Accessory	Protective plates (Refer to p.105 for handling method.)

Panel mounting examples

Horizontal mount

Vertical coupled mount

DC indicators

(DC voltage/DC current input)

1 m m 1	
N 10	
1-1	
* *	
1-1	
1	
N 10	
131	
No.	
11 - 10	
2 2	

vertical mount

FM-215DN

vertical mount

FM-217DN vertical coupled mount

Specifications

					1-point	er type			2-point	ter type						
	Si	ze	mm	100×30	130×36	150×40	170×42	100×30	130×36	150×40	170×42					
	M	odel name		FM-210SN	FM-213SN	FM-215SN	FM-217SN	FM-210DN	FM-213DN	FM-215DN	FM-217DN					
	0	peration principle			Movat	ole coil			Movat	ole coil						
	Ac	ccuracy (grade)		1.5 or 2.5		1 or 1.5		1.5 or 2.5 1 or 1.5								
	So	cale length	(mm)	66	88	100	100	66	88	100	00 100					
	0	uter dimensions		Fig. 1	Fig. 2	Fig. 3	Fig. 4	Fig. 1	Fig. 2	Fig. 3	Fig. 4					
	Weight		(kg)	0.4	0.5	0.6	0.7	0.5	0.6	0.7	0.7					
and delivery period classification		Indicator rating	Delivery period classification		drop											
sific	out	100 <i>µ</i> A	Δ	4000	—	-	_	4000	—	-	-					
clas	current input	500 <i>µ</i> A	Δ	300	300	30	00	300	300	30	00					
iod	rren	1mA	Δ	100	100	10	00	100	100	1(00					
bei		5mA	Δ	20	20	2	0	20	20	20						
/ery	В	10mA	Δ	10	10	1	0	10	10	1	0					
deliv		4~20mA (zero-suppressed)	Δ	10	10	1	0	10	10	1	0					
pu		50mA~10A	Δ	60mV	60mV	60	mV		-	_						
Indicator rating a	voltage input	Indicator rating	Delivery period classification			C	onsumption cur	rent (approx.) n	۱A							
tor	tage	1, 5, 10V	Δ		1n	nA			1r	nA						
dica	No l	1~5V (zero-suppressed)	Δ		1.25	ōmA			1.2	ōmA						
Ĕ	BC	20~300V	Δ		1n	nA			-	_						

Remarks. (1) Models that can be mounted vertically and horizontally can be manufactured; please specify if required.
(2) Use the following table to select the application (instrumentation or panel) and accuracy grade.
(2) Use the following table to select the application (instrumentation or panel) and accuracy grade.

,		····	- (
Application	FM-210N	FM-213N	FM-215N	FM-217N
Instrumentation	1.5	1.0	1.0	1.0
Panel	2.5	1.5	1.5	1.5

۰.	Delivery per	iou classific	auon	
	Symbol	©Standard	OQuasi-standard	∆Special
	Symbol	product	product	product
	Reference delivery period	Immediate delivery	Within 20 days	21 to 60 days

(3) The withstand voltage between the input terminals of the L element and the R element of a 2-needle model (D) is 500VAC for 1min. In the case of a DC circuit or other circuit requiring a higher withstand voltage, use an isolator (T-101IS type) at the input.

(4) Provided with span adjuster (adjustment range: approx. ±5%).

(5) In the case of an electrical quantity scale (A, V, W, var, cos\u03c6, Hz), the AC/DC symbol and 3-phase circuit symbol are not indicated on the scale. The symbol of the input quantity of the receiving indicator is indicated.

(6) Please make sure to read the "Safety Precautions" (pp.5-8) and the "Selection Precautions" (p.9) to assist in selecting the model and use specifications suited to the application.

Ordering method The items in must be specified. Mounting Number of Accuracy Model name Cover type Scale Input rating attitude (grade) Special specifications units Tag No., nameplate engraving, etc. FM-215SN 3 в 0-100% FS4-20mA 1.5 Vertical (in the case where left and right scales differ in a 2-needle model) Left 0-100%/Right 0-200°C

AC indicators

(AC voltage/AC current input)

vertical mount

FR-215SN vertical mount

Delivery period classification

product

Symbol

Standard OQuasi-standard

product

Reference delivery period Immediate delivery Within 20 days 21 to 60 days

product

Specifications

	Size		mm	100×30	130×36	150×40	170×42					
			111111				-					
	Model	name		FR-210SN	FR-213SN	FR-215SN	FR-217SN					
	Operat	ion principle			Rectifier							
	Accura	cy (grade)		2.5		1.5						
	Scale I	le length (mm)		66	88	100	100					
	Outer o	ter dimensions		Fig. 1	Fig. 2	Fig. 3	Fig. 4					
	Weight			0.5	0.7							
elivery on	AC	Indicator rating	Delivery period classification		Consumption VA	or voltage drop						
nd d€ ficatio	current input	500µA~100mA	Δ	1.4V	1.4V	1.4V	1.4V					
ting a		ut 100mA~100mA Δ 100mA~5A Δ		0.2VA	0.2VA	0.2VA						
Indicator rating and delivery period classification	AC voltage	Indicator rating	Delivery period classification		Consumption	n current mA						
2	input	Itage Indicator rating classifica		4mA	4mA	4mA	4mA					

Remarks. (1) Models that can be mounted vertically and horizontally can be manufactured; please specify if required.

(2) Error may occur when the input waveform is distorted.

(3) Please specify the frequency.

(4) 2x, 3x, and 5x expanded scales can also be manufactured.

(5) In the case of an electrical quantity scale (A, V, W, var, $\cos\phi$, Hz), the AC/DC symbol and 3-phase circuit symbol are not indicated on the scale. The symbol of the input quantity of the receiving indicator is indicated.

(6) Please make sure to read the "Safety Precautions" (pp.5-8) and the "Selection Precautions" (p.9) to assist in selecting the model and use specifications suited to the application.

Ordering method

The items in	must be spe	ecified.						
					Mounting			Number of
Model name	Cover type	Scale	Input rating	Frequency	attitude	Special specifications		units
FR-215SN	В	(0-3600) rpm	FS5V	50Hz	Vertical	Tag No., nameplate engraving, etc.]	2

Outer dimensions

Fig. 1 FM-210N/FR-210N

Fig. 2 FM-213N/FR-213N (protective plate unnecessary)

Outer dimensions

Fig. 3 FM-215N/FR-215N

Fig. 4 FM-217N/FR-217N

Nameplate and tag number plate indication standards

Indications on nameplates and tag number plates shall be engraved according to the following standards. Orders with no specified nameplates or tag number plates will be delivered without nameplates or tag number plates.

1. Indication method

Method ······ Engraved/Ink Font ······ Round Gothic Material ····· ABS resin

2. Dimensions/Number of characters/Number of steps (vertical mount)

	Plate	F-210N	F-213N	F-215N	F-217N
	Effective area	9×28	11×32	15×38	25×38
Nameplate	Number of characters per column	9	9	9	9
	Number of rows	2	2	3	3
Tog number	Effective area	9×28	11×32	10×38	8×38
Tag number	Number of characters per column	10	10	10	10
plate	Number of rows	1	1	1	1

●Effective area ……………………… Dimensions enabling effective indication of characters (height × width)

•Number of characters Maximum number of characters that can be entered in a single column

Number of steps ……… Number of character strings

•May differ from the standard size/position depending on the combination of the character string.

•Please inquire regarding horizontal mounting.

3. Style/Print color

Background color of nameplate • tag number plate	Print color	Outer frame color
(B) Black Munsell N1.5	White	Outer frame: N1.5
(F) Dark blue Munsell 7.5BG4/1.5	White	Outer frame: 7.5BG4/1.5
(W) White Munsell N9/0	Black	Outer frame: N1.5 or 7.5BG4/1.5

•If the background color is not specified, it will be the same color as the outer frame.

4. Model-wise indication standards

Nameplates

Tag number plates

Nameplates

Tag number plates

Mechanical Indicators

Bar-shaped Indicators

Handling precautions

1. Using protective plates

- Protective plates are mounted to indicators so that the gaps between the indicator and panel cannot be seen. They are mounted to both sides of an indicator when a single unit is mounted, and mounted at both ends of the indicator when coupled mounting is used.
- Plate attachment
- Match and insert the upper and lower inner protrusions of each plate in the grooves of the outer frame at the rear of the indicator.
- The plates are coated the same color as the outer frame.
- The plates are packaged together with the indicator.
 F-213N does not have protective plates.

2. Mounting the indicator

• Push on the front face of the panel to insert the unit. Next, turn the fastening screws in the rear face of the main unit clockwise using a standard screwdriver or box-end screwdriver with 5.5mm opposing sides. In doing so, the mounting arms will be set automatically and fixed to the panel (thickness of corresponding panel: 1 to 6mm).

3. Zero-point adjustment

• For indicators other than F-217N, open the tag number plate using a standard screwdriver and use the zero-point adjusters inside to adjust the zero point.

Be careful not to apply excessive force to the adjusters.

- For zero-point adjustment of the F-217N, use a standard screwdriver to adjust the zero point by turning the zero-point adjusters on the front face.
- If the unit is equipped with a zero-suppressed indicator, perform adjustment while applying electricity equivalent to the minimum scale value; for example, 4mA in the case of 4 to 20mA.

4. Disassembling of nameplates, tag number plates, covers and scale plates

- Procedure 1. Remove the nameplate and tag number plate.
 - For pivoting tag number plates, remove the extraction pins at the rear. Remove while lifting the indicator approximately 5mm from the panel surface.

(The pivoting tag number plate does not need to be removed to remove the scale plate.)

2. Remove the cover fastening screws.

3. To remove the cover, pull the upper side of the cover forward slowly and then lift slightly.

- 4. To prevent deformation of the needle, turn the zero-point adjuster and move the needle to the lower side.
- 5. Draw out the scale plate wedge toward the front.
- 6. The scale plate can be removed when the upper side (nameplate side) of the scale plate is slowly drawn outward and lifted slightly.
- Note: Be careful not to deform the needle when removing the scale plate.

Transducers

Overview and Features

High performance realized in a compact module. Single function models T-51/T-101 Series

Power K Series (ordinary class, fixed-load output) H Series (ordinary class, constant-voltage/constant-current output) S Series (precision class, constant-voltage/constant-current output)

and Peripheral

Instrumentation An assortment of box models with power, instrumentation and peripheral elements arranged in compact modules.

Mitsubishi Electric transducers

\backslash	Product name							Powe	er tra	เทรปเ	ucers	\$						Ins	strum	enta	ation	trans	sduc	ers			Pe	eriph	eral t	rans	duce	ers		Spe	cial
Sha		uct name	Current	Current (saturated power)	Voltage	Active power	Reactive power	Phase angle (3-phase balanced circuit)	Phase angle (3-phase unbalanced loads)	Power factor	Frequency	Voltage phase angle	Harmonic current	Harmonic voltage	Electric energy	Reactive electric energy	DC level	DC reverse	Isolator	High-speed isolator	Limiter	Adder	Temperature (resistance bulb)	Temperature (thermocouple)	First-order lag	AC current demand (moderate time interval)	AC voltage demand (moderate time interval)	Current with power flow detection	Leakage current	Leakage current (with built-in low-pass filter)	Voltage drop detector	Voltage rise detector	Filter	Harmonics	Active power/Active electric energy
ч		K Series (ordinary class)	0	0	0																														
unctic	T-51 Series	H Series (ordinary class)	0	0	0	0	0	0	0	0	0																								
Single function	T-101 Series	S Series (precision class)	0		0	0	0		0	0	0	0																							
Sir																	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
Collective	T-120	Series	0		0	0	0			0	0		0	0	0	0																		0	

Now even easier to use.

Collective transducers T-120 Series

Multi-use transducers that allow the input of various electric quantities from instrument transformers (VT, CT), and output DC signals and pulses.

•4 modes of mounting

As standard specifications, the T-51, T-101 and T-120 Series can be mounted four ways: mounting legs, IEC rail (35mm), distribution panel breaker mounting plate, and mounting tabs.

Distribution panel breaker mounting plate

Transducers

IEC rail (35mm)

Distribution panel breaker mounting tab

•Compact modules that facilitate panel designing

The realization of compact modules was pursued. There are 2 types of outer dimensions. (T-51/T-101 Series)

Self-lifting screws utilized for input and output terminals Wiring work is easier if self-lifting screws are used.

(T-51/T-101/T-120 Series)

Equipped with power supply indicator

An auxiliary power supply indicator (red LED) that indicates operating state is provided. (excluding the T-51K and T-120 Series)

Mitsubishi Electric electronic technologies fully integrated

In addition to carefully selected electronic parts, the design considers lighting/switching surges and noise.

Select the optimal model according to the application

Single function models Power, instrumentation and peripheral transducers

- K Series Ordinary class, fixed-load output
- H Series Ordinary class, constant-voltage/constant-current output
- S Series ----- Precision class, constant-voltage/constant-current output
- Collective Multi-use for power applications

Safety Precautions

Please pay attention to the following items when using transducers.

Read the instruction manual attached to the product before performing settings or using the device.

For safety reasons, mounting and connection work should only be performed by a professional electrical wiring technician.

1 Precautions concerning usage environment and usage conditions

Do not use in the following locations. Use in such locations may lead to malfunction, significant error or reduced service life.

- Locations where the ambient temperature is outside the range of -10°C~50°C.
- •Locations where the average daily temperature exceeds 35°C.
- •Locations where the humidity is outside the range of 30%RH~85% RH (no condensation).
- Locations with excessive dust, corrosive gases, salinity or oil fumes.
- •Locations with excessive vibration or impact.
- •Locations directly exposed to rain, water drops or sunlight.
- •Locations with excessive external noise.
- •Locations at an altitude of 1000m or more.
- Locations where a strong electric field or magnetic field is generated.
- •Locations where there are metal pieces or inductive substances present.

2 Mounting precautions

Please pay attention to the following items regarding mounting.

- •The transducers must be mounted inside a panel.
- Tighten the mounting screws using the following torques:

M4 iron screws 1.47~1.86N•m
M4 brass screws 0.88~1.08N•m
M5 iron screws 2.94~3.43N•m
M5 brass screws 1.67~2.06N•m

3 Connection precautions

Please pay attention to the following items regarding connection.

- •Use the specified materials and diameters for the electrical wires that connect the output and load of transducers in order to prevent failure due to external noise or surges.
- •Use the following crimp terminals.

Series	Applicable crimp terminals	Tightening torque
T-51, T-101	Round crimp terminals (outer diameter: ϕ 8.5 or less) for M4 screws	0.98~1.4/N•m
T-120	Round crimp terminals (outer diameter: ϕ 8.3 or less) for M4 screws	
	Round crimp terminals (outer diameter: ϕ 7.1 or less) for M3.5 screws	0.61~0.82N•m

Although transmission distances for standard combinations are indicated in this catalog, the values are to be used when there is no interference (e.g., induction voltage, surge) in the transmission line. If installation of the transmission line parallel to power cables is unavoidable and there is a possibility of inductive interference, use a shielded transmission line to avoid interference during use.

- Power factor and reactive power transducers will not operate correctly when connected as a reverse phase sequence. Use with the correct phase sequence.
- •When a device, such as a harmonics transducer for measuring harmonic voltage is connected to a VT, do not remove the auxiliary power supply of multi-use or harmonics transducers from the VT. The harmonic voltage may not be measured correctly.
- In regard to grounding in the connection diagrams, grounding of the secondary sides of the VT and CT is unnecessary for low-voltage circuits.

Connect correctly

Check the connection diagrams carefully before making connections. Erroneous connections may cause equipment to scorch or catch fire.

Fasten terminal connections securely

Fasten electrical wires securely to the terminals. Otherwise, overheating, equipment burnout or fire may occur.

Do not perform work with live wires

Do not perform connection work with live wires. Electrical shock, electrical burns, equipment burnout or fire may occur.

Do not open the secondary side of a CT circuit

Ensure that the signal on the secondary side of the CT is connected correctly to the CT connection terminals. Incorrect connection of the CT or opening the secondary side of the CT will cause high voltage on the secondary side of the CT, and may lead to equipment failure, electrical shock or a fire.

Do not short-circuit the secondary side of a VT circuit

Ensure that the secondary side of the VT is correctly connected to the VT connection terminals. Incorrect connection of the VT or short-circuiting the secondary side of the VT will cause a large overcurrent to flow through the VT secondary winding, which will lead to equipment failure, electrical shock or fire.

4 Precautions concerning preparation before use

Please read the following items before use.

(1) Transport

Avoid application of vibration and impact as much as possible during transport.

In situations where it is possible that transducers will be subject to excessive vibration or shock, remove the transducer from the panel before transportation.

(2) Check the model name and rating

As a precautionary measure, check the model name and specifications such as input, output and auxiliary power supply before use.

(3) Adjustment

Generally, transducers are adjusted before shipment from the factory and do not require adjustment. To perform adjustment for matching with receiving-side equipment, perform adjustment while avoiding the application of excessive force to the adjusters. Not doing so may cause failure of the adjusters.

Avoid touching the adjusters in ordinary circumstances.

(4) Insulation resistance test and withstand voltage test Please read the following carefully before performing an insulation resistance test or voltage test. Not doing so may cause failure.

Do not perform a withstand voltage test between input and output for non-isolated models

For instrumentation transducers where the input and output circuits are not insulated, do not perform withstand voltage testing between the input and output. Breakage will occur.

The withstand voltage test will cause the dielectric breakdown of internal elements, and may cause equipment failure or fire.

5 Usage precautions

Please pay attention to the following items during use.

Use transducers according to their ratings

Use transducers according to their ratings. Not doing so may cause significant error, failure or fire due to overheating.

For input values outside the rating range, the output value will be outside the rating range.

Ensure the settings are correct

For models requiring settings, read the relevant instruction manual carefully before performing settings. Setting errors or unset items may cause abnormal operation and alarms may not function properly for receiving-side equipment; for example, if no value is set, no alarm will be activated for the output signal.

Do not lower the input voltage

With the active power, reactive power, power factor, phase angle and frequency transducers, an error may occur if the input voltage is outside the specified operating range (guaranteed value: 90~110% of the rated voltage).

Additionally, malfunction may occur if the input voltage drop is significant (less than 60% of the rated voltage).

6 Precautions concerning repair upon failure and treatment of abnormality

If an instrument malfunctions contact the nearest branch of Mitsubishi Electric System Service Co., Ltd. or Mitsubishi Electric.

7 Maintenance and inspection

Please pay attention to the following items regarding maintenance and inspection. Refer to p.174 for details.

Make sure to turn off the power for maintenance and inspections

When performing maintenance and inspections of transducers, be sure to turn off the power supply to the circuit connected to the transducer.

Electrical shock, electrical burns, equipment burnout or fire may occur if removal is attempted in the live-wire state.

8 Storage precautions

Do not store transducers for long periods in the following locations.

- ●Locations where the ambient temperature is outside the range of -20~60°C.
- •Locations where the average daily temperature exceeds 35°C.
- •Locations where the humidity is outside the range of 30%RH~85%RH (no condensation).
- •Locations with excessive dust, corrosive gases, salinity or oil fumes.
- •Locations with excessive vibration or impact.
- •Locations directly exposed to rain and/or water drops.
- •Locations where there are metal pieces or inductive substances present.

When storing transducers, turn off the power, remove the wiring such as those for input/output/auxiliary power supply and place in a plastic bag.

Make sure to turn off the power before removal

In removing a transducer for storage, make sure to turn off the power supply of the circuit connected to the transducer.

Electrical shock, electrical burns, equipment burnout or fire may occur if removal is attempted in the live-wire state.

9 Disposal precautions

Dispose of the product appropriately according to the "Waste Management and Public Cleansing Law." This product does not use batteries.

•WARRANTY

- •The warranty period is 1 year from the date of purchase or 18 months after manufacture, whichever is earlier. Even during the warranty period, repairs for failure due to an intentional or negligent act by the customer shall be charged.
- •Mitsubishi Electric shall not be liable for warranty against damages resulting from reasons not attributable to the company, opportunity loss and/or lost earnings on the customer's part due to malfunction of a Mitsubishi product, damages resulting from special circumstances whether foreseeable or unforeseeable by Mitsubishi, secondary damages, accident compensation, and damages and other services besides those of a Mitsubishi product.

Product service life

- •The expected life of a transducer is 10 years.
- * The expected service life is the period or number of operations for which the transducer can be used without functions deteriorating to a level that impairs practical use, on the condition that the equipment or materials are used in accordance with standard specification conditions.
 Please note that the expected service life is only a guide and performance is not guaranteed for this period.
 (Excerpt/Summary of "Expected Service Life of Electrical Equipment," in the September, 1998 issue of the Journal of the Institute of Electrical Installation Engineers of Japan.)

•Recommended exchange period

 The recommended exchange period for transducers is seven years.

Requests Regarding Selection

1 For remote measurement, select a large output value.

When performing remote measurements, as a general rule, use a local transducer and ensure that transmissions are made according to the output side of the transducer; that is, ensure that the output side is not pulled over a long distance. Additionally, select a large output value; for example, 4~20mA.

2 Select an H or S Series model if the load resistance varies.

When the load resistance to be connected to the output terminals of a transducer is unknown, or where there is a possibility for future increases in load, select a constant-voltage, constant-current output transducer such as a model from the H or S series.

3 Select a model with an effective value if the input waveform becomes distorted.

AC-input transducers are calibrated based on sinusoidal input. In addition, depending on the model, error may occur when the input waveform is distorted due to the operating principle. Therefore, if there is waveform distortion, select an effective-value model with comparatively low error such as T-101SAA or T-101SAV.

4 Select a phase-angle transducer for unbalanced loads if the three-phase loads are unbalanced.

Phase-angle transducer errors may occur if the three-phase loads of balanced circuits become unbalanced. Select a phase-angle transducer for unbalanced loads such as T-101HPA(U) or T-101SPA(U) if it is possible that the three-phase load will be unbalanced.

5 Error may occur when the input current is extremely low (phase angle, power factor).

When using a phase angle or power factor transducer, error or malfunction may occur when the input current drops significantly lower than the rated current. Therefore, when selecting the rated primary current of a CT, ensure that the secondary current during actual use is 1/3 or more of the rated secondary current of the CT.

6 Check the electricity pulse unit (active and reactive).

Be certain to first check the restrictions applying to the value to be set for the electricity pulse unit (active and reactive) for multi-use transducers.

7 The standard bias/span ratio of the rated values of a transducer is 1/4 or less.

Cases where the bias/span ratio is larger than 1/4 can be supported by increasing the class index by multiples of 1/4 only.

- (Example 1) In the case where the output value is 4~20mA, the bias is 4mA, the span is 16 (=20-4)mA, and the bias/span ratio is thus 4/16=1/4.
- (Example 2) In the case where the output value is $12 \sim 20$ mA, the bias is 12mA, the span is 8 (=20 12)mA, and the bias/span ratio is thus 12/8=3/2. This is six times the abovementioned ratio of 1/4 and is accommodated by selecting a model with which the class index is multiplied by six; for example, if the class index is 0.25, $0.25 \times 6 =$ class 1.5.

Products list

Power transducers

Series O _{1/t}		K Se	eries	H S	eries	S Series	
Product name	Output form	Fixed load	Operation method	Constant voltage/ constant current	Operation method		Operation method
Current	(p.112)	T-51KAA	Average value rectification	T-51HAA	Approximate effective value rectification	T-101SAA	Effective value computation
	Saturated power (p.113) T-51KSS Average value rectification T-51HSS		T-51HSS	Approximate effective value rectification	_	_	
Voltage	(p.114)	T-51KAV	Average value rectification	T-51HAV	Approximate effective value rectification	T-101SAV	Effective value computation
Active pow	ver (p.116)	_	_	T-101HW	Time division multiplication	T-101SW	Time division multiplication
Reactive po	wer (p.118)	_	—	T-101HVAR	Time division multiplication	T-101SVAR	Time division multiplication
Phase angle	3-phase balanced circuit	_	—	T-101HPA	Phase discrimination	_	_
(p.120)	3-phase unbalanced loads	_	—	T-101HPA (U)	Positive phase detection phase discrimination	T-101SPA (U)	Positive phase detection phase discrimination (integration type)
Power factor (p.122)	3-phase unbalanced loads	_	—	T-101HPF (U)	Positive phase detection power factor correction	T-101SPF (U)	Positive phase detection power factor computation
Frequenc	y (p.124)	_	_	T-51HF	One-shot	T-101SF Quartz osc frequency of	
Voltage phase	angle (p.125)	_	_	_	_	T-101SY	Voltage phase discrimination

Model Name Configuration

Instrumentation transducers

Pro	duct name	Model name
DC level (T-51DL	
DC revers	T-51DR	
Isolator (p	T-101IS	
High-spee	T-101ISQ	
Limiter (p.	T-51LM	
Adder (p.	T-101AD	
	Resistance bulb (non-isolated)	T-51TP
Temperature	Resistance bulb	T-101TPZ
(p.132)	Thermocouple (non-isolated)	T-101TC
	Thermocouple (isolated)	T-101TCZ
First-orde	T-51DS	

Peripheral transducers

Pro	Model name						
	AC current demand (moderate time interval) (p.138)						
, v	AC voltage demand (moderate time interval) (p.139)						
	Current transducer with power flow detection (p.140)						
Leakage	T-51LG						
	with built-in low-pass filter	T-51LGF					
Voltage dro	Voltage drop detector (p.146)						
Voltage rise	T-101VDH						
Filter (p.1-	T-51FA						

i.	-
P	- 1
r,	ъ.
E	Ξ.
	7
R	ő.
ł	-
P	5
P	Η.
E	Ξ.
	n,

• Product name (instrumentation)

Code	Product name
DL	DC level
DR	DC reverse
IS	Isolator
ISQ	High-speed isolator
LM	Limiter
AD	Adder
TP	Temperature (resistance bulb) [non-isolated]
TPZ	Temperature (resistance bulb) [isolated]
тс	Temperature (thermocouple) [non-isolated]
TCZ	Temperature (thermocouple) [isolated]
DS	First-order lag

• Product name (peripheral)

• Floudet hame (peripheral)					
Code	Product name				
HAA (DS)	AC current demand (moderate time interval)				
HAV (DS)	AC voltage demand (moderate time interval)				
HAA (D)	Current transducer with power flow detection				
LG	Leakage current				
LGF	Leakage current (with built-in low-pass filter)				
VDL	Voltage drop detector				
VDH	Voltage rise detector				
FA	Filter				

Current Transducers [Insulated]

T-51/T-101 Series

T-51HAA

T-101SAA

Outer shape	Model name	Accuracy (grade)	Inj Current	out (AC)	Output (DC)	Ripple/ Response	Consumption VA	Auxiliary power supply	Weight	Delivery period
õ		(3.111)	Current	Frequency	Voltage or current and load speed VA		1-17		classification	
	T-51KAA	$0.5 \begin{bmatrix} 5A \\ 1A \end{bmatrix} 50 \text{ and } 60\text{Hz} \begin{bmatrix} \bullet T-51\text{KAA} (^{\dagger}1) \\ 1\text{ mA} : \text{specify } 5k\Omega \text{ or less} \\ 5\text{mA} : \text{specify } 1k\Omega \text{ or less} \\ 100\text{mV} : \text{specify } 50k\Omega \text{ or more} \\ 1V : \text{specify } 50k\Omega \text{ or more} \\ 5V : \text{specify } 50k\Omega \text{ or more} \end{bmatrix}$		5% P-P or less 1s or less	0.4	_	0.4kg	0		
Box	T-51HAA	0.5	5A 1A	50 and 60Hz	•T-51HAA, T-101SAA 1mA : $0 \sim 5k\Omega$ 5mA : $0 \sim 1k\Omega$ 4~20mA : $0 \sim 600\Omega$ 100mV : $5k\Omega \sim \infty$ 1V : $5k\Omega \sim \infty$ 5V : $5k\Omega \sim \infty$ 10V : $10k\Omega \sim \infty$ 1~5V : $5k\Omega \sim \infty$	1% P-P or less 1s or less	0.1	110VAC ⁺¹⁰ % 50 and 60Hz Consumption VA: 3	0.4kg	0
	T-101SAA	0.25	5A 1A	50Hz or 60Hz		1% P-P or less 0.5s or less	0.1	110VAC ^{±10} % 50 and 60Hz Consumption VA: 3	0.6kg	Δ

The load resistance connected to T-51KAA is fixed. In the case of current output, please specify a *1 resistance value no more than that shown in the table above; specify a resistance value no less than that shown in the table above in the case of voltage output.

Symbol	©Standard		∆Special	
Gymbol	product	product	product	
Reference delivery period	Immediate delivery	Within 20 days	21 to 60 days	

Delivery period classification

*2 Error may occur when the input waveform is distorted. For example, when the third harmonic content is 15%, the error is approx. ±5% for T-51KAA, ±2% for T-51HAA and $\pm 0.2\%$ for T-101SAA.

Manufacturable range

		T-51KAA	T-51HAA	T-101SAA	
Input		0.1~7.5A	0.1~5A		
0		0.1~5mA	0.1~20mA		
Outpu	זג	50mV~5V 50mV		/~10V	
Auxiliary power AC		_	100, 105, 110, 115, 120V +10 p/		
			100, 105, 110, 115, 120V ₊₁₀ % 200, 210, 220, 230, 240V ⁻¹⁵ %		
supply	DC	—	24V, 100~120V	24V±10%	

The voltage tolerance of a 24VDC auxiliary power supply is ±10%. The voltage tolerance of a 100~120VDC auxiliary power supply is +15 %.

Input/Output relationships

Connection diagrams (Refer to p.156 for outer dimensions.)

Note 1. For low-voltage circuits, grounding of the secondary side of the current transformer is unnecessary.

0						
● K Series	Model name	Input Current	Output Voltage or current	Load resistance	Number of units	
	T-51KAA	5A	0-1mA	5kΩ	15	
H Series	Model name	Input Current	Frequency	Output Voltage or current	Auxiliary power supply	Number of units
S Series	T-51HAA	5A		4-20mA	110VAC	20
•			Specify in	the case of S Series.		

Current Transducers (Saturated Power) [Insulated]

T-51/T-101 Series

Suited for motor circuits, heater circuits and other circuits in which an overcurrent flows during startup.

When combined with a needle indicator, an indicator with the scale expanded three-fold is realized.

Outer shape	Model	Accuracy	Inpu	t (AC)	Output (DC)	Ripple/ Response	Consumption		Weight	Delivery period
Outer	name	(grade)	Current	Frequency	Voltage or current and load	speed	VA	supply	Trongin	classification
Box	T-51KSS	0.5	0~5~15A 0~1~3A	50 and 60Hz	●T-51KSS (*1) 0~0.8~(1)mA : specify 5kΩ or less 0~4~(5)V : specify 50kΩ or less	5% P-P or less 1s or less	0.4	_	0.4kg	0
B	T-51HSS	0.5	0~5~15A 0~1~3A	50 and 60Hz	●T-51HSS 0~0.8~(1)mA : 0~5kΩ 4~16~(20)mA : 0~600Ω 0~4~(5)V : 5kΩ~∞ 0~8~(10)V : 10kΩ~∞	1% P-P or less 1s or less	0.1	110VAC ⁺¹⁰ % 50 and 60Hz Consumption VA: 3	0.4kg	0

Input/Output relationships

AC input -

mA V

(1) (5)

0.4 2

0 0

0 0 0.5 2.5

0.8 4

DC output

*1 The load resistance connected to T-51KSS is fixed. In the case of current output, please specify a resistance value no more than that shown in the table above; specify a resistance value no less than that shown in the table above in the case of voltage output.

*2 Models with 2- to 5-times expanded saturated power can also be manufactured. Error may occur when the input waveform is distorted. *3

For example, when the third harmonic content is 15%, the error is approx. \pm 5% for T-51KSS and \pm 2% for T-51HSS.

*4 The tolerance of the maximum saturated power is within ±10% (% in respect to saturated power value).

Manufacturable range

		T-51KSS	T-51HSS		
Input		0.1~7.5A	0.1~5A		
Outpu	ut	Only specifications in the table above	0.1~20mA 50mV~10V		
Auxiliary	AC	_	100, 105, 110, 115, 120V		
power	10		200, 210, 220, 230, 240V ⁻¹⁵		
supply	DC	_	24V, 100~120V		

The voltage tolerance of a 24VDC auxiliary power supply is $\pm 10\%$. The voltage tolerance of a 100~120VDC auxiliary power supply is ⁺¹⁵/₋₂₅%.

Connection diagrams (Refer to p.156 for outer dimensions.)

Note 1. For low-voltage circuits, grounding of the secondary side of the current transformer is unnecessary.

Ordering method

K Series	Model name		Input Current		Output Voltage or current	Load resistance	Number of units
	T-51KSS		0-5-15A		0-0.8-1mA	3kΩ	10
● H Series	Model name		Input	I	Output	Auxiliary power supply	Number of units
	Wouer name		Current		Voltage or current	Auxilially power supply	Number of units
	T-51HSS		0-5-15A		4-16-20mA	110VAC	20
				•	<u>^</u>		

Delivery period classification							
Symbol	©Standard	○Quasi-standard	∆Special				
Symbol	product	product	product				

mA

(20)

16

4

0

0

0.5 2.5

AC input -

З 15 А

DC output 10

З 15 А

Symbol	Otanuaru			
Gymbol	product	product	product	
Reference delivery period	Immediate delivery	Within 20 days	21 to 60 days	

Voltage Transducers [Insulated]

T-51/T-101 Series

Γ	ape	Model	Accuracy	Inr	out (AC)	Output (DC)	Ripple/	Consumption	Auxiliary power		Delivery
	Outer shape	name	(grade)	Voltage	Frequency	Voltage or current and load	Response speed	VA	supply	Weight	period classification
		T-51KAV	0.5	150V 300V	50 and 60Hz	 T-51KAV (*1) 1mA : specify 5kΩ or less 5mA : specify 1kΩ or less 100mV : specify 50kΩ or more 1V : specify 50kΩ or more 5V : specify 50kΩ or more 	5% P-P or less 1s or less	1.4	_	0.4kg	0
	Box	T-51HAV	0.5	150V 300V	50 and 60Hz	●T-51HAV, T-101SAV 1mA : 0 ~ 5kΩ 5mA : 0 ~ 1kΩ 4~20mA : 0~600Ω	1% P-P or less 1s or less	150V : 0.4 300V : 0.8	110VAC ^{±10} % 50 and 60Hz Consumption VA: 3	0.4kg	0
		T-101SAV	0.25	150V 300V	50Hz or 60Hz	$100mV : 5k\Omega \sim \infty$ $1V : 5k\Omega \sim \infty$ $5V : 5k\Omega \sim \infty$ $10V : 10k\Omega \sim \infty$ $1\sim5V : 5k\Omega \sim \infty$	1% P-P or less 0.5s or less	150V : 0.4 300V : 0.8	110VAC :10 % 50 and 60Hz Consumption VA: 3	0.6kg	Δ

*1 The load resistance connected to T-51KAV is fixed. In the case of current output, please specify a resistance value no more than that shown in the table above; specify a resistance value no less than that shown in the table above in the case of voltage output.
*2 Error may occur when the input waveform is distorted.

Delivery period classification								
Symbol	©Standard	OQuasi-standard	∆Special					
Symbol	product	product	product					
Reference delivery period	Immediate delivery	Within 20 days	21 to 60 days					

For example, when the third harmonic content is 15%, the error is approx. \pm 5% for T-51KAV, \pm 2% for T-51HAV and \pm 0.2% for T-101SAV.

Manufacturable range

		T-51KAV	T-51HAV	T-101SAV		
Input		50~300V				
0		0.1~5mA	0.1~20mA			
Outpu	וו	50mV~5V 50mV~10V				
Auxiliary	10		100, 105, 110, 115, 120V			
power	AC	_	100, 105, 110, 115, 120V ⁺¹⁰ 200, 210, 220, 230, 240V ⁻¹⁵ [%]			
supply DC		—	24V, 100~120V	24V±10%		

The voltage tolerance of a 24VDC auxiliary power supply is $\pm 10\%$. The voltage tolerance of a 100~120VDC auxiliary power supply is $\frac{15}{25}\%$.

■Input/Output relationships

Connection diagrams (Refer to p.156 for outer dimensions.)

Note 1. For low-voltage circuits, grounding of the secondary side of the instrument voltage transformer is unnecessary.

Ordering method

Specify in the case of S Series.

Transducers

Active Power Transducers [Insulated]

T-51/T-101 Series

T-101HW

Outer shape	Model	uracy ade)			Inp	ut (AC)		Output (DC)	Ripple/ Response	Consum	ption VA	Auxiliary power	Weight	Delivery period
Outer	name	Accuracy (grade)	Phase- wire	Voltage	Current	Inherent active power (P0)	Frequency	Voltage or current and load	speed	Current circuit	Voltage circuit		weight	classification
			e	110V	5A	0.25~0.6kW					0.6			
			2-W	1100	1A	0.05~0.12kW				0.2	0.0			
			1-phase 2-wire	0001/	5A	0.5~1.2kW		1mA : 0~5kΩ		0.2	1.0			
			÷	220V	1A	0.1~0.24kW		5mA : 0~1kΩ			1.2			
			3-wire	100/0001	5A	0.5~1.2kW		4 00		I1 0.1	P0-P10.3			
			1-phase 3-wire	100/200V	1A	0.1~0.24kW		4~20mA : 0~600Ω		I2 0.1	Po-P20.3	110VAC		
	TIOUNU		e	110V	5A	0.5~1.2kW	50 and	100mV : 5kΩ~∞	1% P-P or less	L O 1	P1-P20.3	+10 %		
	T-101HW	0.5	3-wii	110V	1A	0.1~0.24kW	60Hz	1V : 5kΩ~∞	0.5s or less	I1 0.1	P2-P30.3	50 and 60Hz Consumption		0
			3-phase 3-wire	0001	5A	1.0~2.4kW					P1-P20.6	VA: 3		
			ę	220V	1A	0.2~0.48kW		5V : 5kΩ~∞		I3 0.1	P2-P30.6			
			e	110	5A	0.5~1.2kW		10V : 10kΩ~∞		I1 0.1	P0-P10.2			
			4-wi	$\frac{110}{\sqrt{3}}$ /110V	1A	0.1~0.24kW		1~5V : 5kΩ~∞			Po-P30.2			
			3-phase 4-wire	110/1001	5A	0.86~2.07kW					P0-P10.3			
×			ų	110/190V	1A	0.17~0.40kW				I3 0.1	Po-P30.3			
Box			ē	110V	5A	0.25~0.6kW	_	1mA : 0~5kΩ			0.0			
			2-wire	1100	1A	0.05~0.12kW				0.2	0.6			
			1-phase	220V	5A	0.5~1.2kW					1.0	3		
			÷		1A	0.1~0.24kW		5mA : 0~1kΩ			1.2			
			3-wire	100/0001/	5A	0.5~1.2kW		4 00 - 4 - 0 0000		I1 0.1	P0-P10.3			
			1-phase 3-wire	100/200V	1A	0.1~0.24kW		4~20mA : 0~600Ω	1% P-P	I2 0.1	Po-P20.3	110VAC		
	T 1010W	0.05	ē	1101	5A	0.5~1.2kW	50Hz or	100mV : 5kΩ~∞	or less	1.01	P1-P20.3	+10 %	0.01.5	
	T-101SW	0.25	3-phase 3-wire	110V	1A	0.1~0.24kW	60Hz	1V : 5kΩ~∞	0.5s	I1 0.1	P2-P30.3	50 and 60Hz Consumption	0.6kg	
			ohase	220V	5A	1.0~2.4kW			or less	T- 0.1	P1-P20.6	VA: 3		
			ų	2200	1A	0.2~0.48kW		5V : 5kΩ~∞		I3 0.1	P2-P30.6			
			e	110 /110 /	5A	0.5~1.2kW	-	10V : 10kΩ~∞		Tr O 1	P0-P10.2			
			3-phase 4-wire	$\frac{110}{\sqrt{3}}$ /110V	1A	0.1~0.24kW		1~5V : 5kΩ~∞		I1 0.1	Po-P30.2			
			ohase	110/1001/	5A	0.86~2.07kW				I2 0.2	P0-P10.3			
			ų	110/190V	1A	0.17~0.40kW				I3 0.1	Po-P30.3			
										Delivery	period cla	assification		

Manufacturable range

		T-101HW T-101SW		*1	Plea activ
Input		Within the range of the inherent act	*2	The	
Outp	ut	0.1~20mA 5		Pos	
Auxiliary AC		100, 105, 110, 200, 210, 220,		acc	
power		200, 210, 220,	210, 220, 230, 240V -15 /~		mar
supply	DC	24V, 100~120V	24V±10%	(Ex	ampl

*1 Please specify an inherent active power value for the transducer (i.e., input rating of the active power transducer) within the range in the table above.
*2 The manufacturable range for bidirectional current output is ±0.1~±5mA.

Symbol

OStandard ○Quasi-standard △Special

product

Reference delivery period Immediate delivery Within 20 days 21 to 60 days

product

product

The manufacturable range for bidirectional current output is ±0.1~±5mA. Positive/negative bidirectional output models for positive/negative bidirectional inputs accompanying power flow and positive direction output-only models can also be manufactured.

The voltage tolerance of a 24VDC auxiliary power supply is $\pm 10\%$.	
The voltage tolerance of a 100~120VDC auxiliary power supply is $\frac{+15}{.25}$ %.	

ole)	Input	Output				
	-1kW~0~1kW	-1~0~1mA -5~0~5V	0~0.5~1mA 4~12~20mA 0~50~100mV 0~2.5~5V			

Transducers

■"Inherent active power" of active power transducers

An active power transducer can be manufactured if the transducer's inherent active power $(P_o = \frac{\text{primary-side active power (kW)}}{\text{VT ratio} \times \text{CT ratio}})$ is within the range of the table on the left.

In the case of positive/negative bidirectional input, calculate using the larger of the positive or negative active powers.

* The primary-side active power (kW) mentioned here is not the full-load active power based on the VT-CT rating. It refers to the active power value kW (i.e., primary-side active power value corresponding to the rated output value) to be controlled according to the load state (e.g., light load). (equivalent to the scale of the indicator)

Inherent active power value calculation example

In the case of a 3-phase, 3-wire, VT 6600/110V, CT 200/5A arrangement with the primary side power being 2000kW:

Transducer inherent active power $P_0 = \frac{\text{primary-side active power (kW)}}{\text{VT ratio} \times \text{CT ratio}} = \frac{2000 \text{kW}}{6600/110 \times 200/5} = 0.833 \text{ (kW)}$

Input/Output relationships

Connection diagrams (Refer to p.156 for outer dimensions.)

Note 1. For low-voltage circuits, grounding of the secondary side of the instrument voltage transformer and current transformer is unnecessary.

Reactive Power Transducers

T-51/T-101 Series

T-101HVAR

Outer shape	Model	Accuracy (grade)			In	put (AC)		Output (DC)	Ripple/ Response	Consum	ption VA	Auxiliary power	Weight	Delivery period
Outer	name	Accu (gra	Phase- wire	Voltage	Current	Inherent active power (Qo)	Frequency	Voltage or current and load	speed	Current circuit	Voltage circuit	supply	weight	classification
				110V	5A	0.5 ~1.2kvar					P1-P20.3			
			e 3-wire	1100	1A	0.1 ~0.24kvar				I1 0.1	P2-P30.3			
			3-phase 3-wire		5A	1.0 ~2.4kvar	50 and	–1~0~1mA ∶0~5kΩ		I2 0.2 I3 0.1	P1-P20.6			
			220V	1A	0.2 ~0.48kvar	50 and		–5~0~5mA:0~1kΩ	1% P-P or less		P2-P30.6	110VAC +10 -15%	0.6kg	
	T-101HVAR	0.5		110 (110)	5A	0.5 ~1.2kvar	60Hz	–100~0~100mV ∶5kΩ~∞	0.5s or less		P1-P20.3	50 and 60Hz Consumption VA: 3		0
			e 4-wire	<u>110</u> /110V	1A	0.1 ~0.24kvar		−1~0~1V : 5kΩ~∞		I1 0.1	P2-P30.3			
			3-phase 4-wire	110/1001/	5A	0.86~2.07kvar		–5~0~5V:5kΩ~∞ –10~0~10V:10kΩ~∞		I ₂ 0.2 I3 0.1	P1-P20.5			
Box				110/190V	1A	0.17~0.40kvar		0~0.5~1mA : 0~5k Ω			P2-P30.5			
ğ				110V	5A	0.5 ~1.2kvar		$0~2.5~5mA:0~1k\Omega$			P1-P20.3			
			3-phase 3-wire	1100	1A	0.1 ~0.24kvar		4~12~20mA : 0~600Ω 0~50~100mV : 5kΩ~∞		I1 0.1 I2 0.2	P2-P30.3			
			3-phase	220V	5A	1.0 ~2.4kvar		0~0.5~1V : 5kΩ~∞		I2 0.2 I3 0.1	P1-P20.6			
	T-101SVAR	0.25		2200	1A	0.2 ~0.48kvar	50Hz	0~2.5~5V ∶5kΩ~∞	1% P-P or less		P2-P30.6	110VAC ^{±10} / ₋₁₅ % 50 and 60Hz	0.6kg	Δ
	TTUIOVAR	0.20		<u>110</u> /110V	5A	0.5 ~1.2kvar	or 60Hz	0~5~10V : 10kΩ~∞	0.5s or less			Consumption VA: 3	U.OKY	
			phase 4-wire	√3 /1100	1A	0.1 ~0.24kvar		1~3~5V ∶5kΩ~∞		I1 0.1 I2 0.2	P2-P30.3			
			3-phase	110/190V	5A	0.86~2.07kvar				I2 0.2 I3 0.1	P1-P20.5			
				110/1907	1A	0.17~0.40kvar					P2-P30.5			

Manufacturable range

		T-101HVAR	T-101SVAR			
Inpu	t	Within the range of the inherent reactive power (Qo) in the table above. *1				
Output		0.1~20mA, 50mV~10V *2				
Auxiliary power	AC	100, 105, 110, 115, 120V 200, 210, 220, 230, 240V ⁺¹⁰ / ₋₁₅ %				
supply DC		24V, 100~120V	24V±10%			

The voltage tolerance of a 24VDC auxiliary power supply is $\pm 10\%.$ The voltage tolerance of a 100~120VDC auxiliary power supply is $^{+15}_{-25}$ %.

Delivery period classification

Symbol	©Standard	○Quasi-standard	∆Special		
Symbol	product	product	product		
Reference delivery period	Immediate delivery	Within 20 days	21 to 60 days		

 *1 Please specify the inherent reactive power value of the transducer within the range in the table above. The reactive power transducer has bidirectional inputs for lead (LEAD) and lag (LAG) of the phase.
 *2 The manufacturable range for a bidirectional current output is ±0.1-±5mA.

Unidirectional input and unidirectional output for the lag side (LAG) or the lead side (LEAD) can also be manufactured. Please specify LAG or LEAD.

(Example)	Input	Output
	LAG 0~1kvar	0~1mA
		4~20mA
	LEAD 0~1kvar	0~100mV
		0~5V

"Inherent reactive power" of reactive power transducers

A reactive power transducer can be manufactured if the transducer inherent reactive power $\left(\mathbf{Q}_{_{0}} = \frac{\text{primary-side reactive power (kvar)}}{\text{VT ratio} \times \text{CT ratio}}\right)$ is within the range of the table on the left. In the case of bidirectional input, calculate using the larger of the lag or lead reactive powers.

* The primary-side reactive power (kvar) mentioned here is not the full-load reactive power based on the VT-CT rating. It refers to the reactive power value kvar

(primary-side reactive power value equivalent to the rated output value) to be controlled according to the power factor.

Inherent reactive power value calculation example

In the case of a 3-phase, 3-wire, VT 6600/110V, CT 200/5A arrangement with the primary-side reactive power being 1200kvar:

Transducer inherent reactive power $Q_0 = \frac{\text{primary-side reactive power (kvar)}}{\text{VT ratio} \times \text{CT ratio}} = \frac{1200 \text{kvar}}{6600/110 \times 200/5} = 0.500 \text{ (kvar)}$

Input/Output relationships

Connection diagrams (Refer to p.156 for outer dimensions.)

 *3 In the case of unidirectional input, the lag side (LAG) is the reactive power unless particularly specified.

*4 A CT must be inserted and used in the current circuit because reactive power transducers are three-current systems.

*5 Operation will be abnormal when the input of the three-phase circuit is a negative-phase sequence.

voltage and line voltage.

Note 1. For low-voltage circuits, grounding of the secondary sides of the instrument voltage transformer and current transformer is unnecessary.

Ordering method

Model name	Phase-wire	Input Voltage	Current		Transducer inhere reactive power val		Frequency		Output Voltage or current		Auxiliary power supply		Number of units
T-101HVAR	3P3W	110V	5A	l	LEAD1000-0-LAG1000	ar	60Hz		-5-0-5V		110VAC		3
		In t	he case of 3-p	ohase, 4	-wire,		Γ_P	lease	specify in the c	ase o	f S Series.		
		ple	ase specify th	e phase	Alth	ugh mai	nufacturing	will l	be performed ev	en wł	nen specified in	kvar	units,

the specifications will be converted to var units on the rating nameplate.

Transducers

Phase Angle Transducers [Insulated]

T-51/T-101 Series

T-101HPA (U)

Outer shape	Model	uracy ade)	Phase- wire		Inpu	t (AC)		Output (DC)	Ripple/ Response	Consum	ption VA	Auxiliary power	Weight	Delivery period
Outer	name	Acct (gr		Voltage	Current	Phase angle	Frequency	Voltage or current and load	speed	Current circuit	Voltage circuit	supply	- 5	classification
	T-101HPA	2.0	3-phase 3-wire (balanced circuit)	110V	5A 1A	LEAD 60°	50 and		1% P-P or less	0.1	0.3		0.644	0
	FUTRA	2.0	3-phase 3-wire (220V	5A 1A	, LAG 60°	60Hz	–1~0~1mA : 0~5kΩ	1s or less	0.1	0.6		0.6kg	0
			ed loads)	110V	5A			–5~0~5mA : 0~1kΩ			0.3	110VAC		
			(unbalano		1A			–100~0~100mV : 5kΩ~∞		I1 0.1		⁺¹⁰ / ₋₁₅ % 50 and 60Hz		
			3-phase 3-wire (unbalanced loads)	220V	220V 5A 1A	LEAD 60°		–1~0~1V : 5kΩ~∞ –5~0~5V : 5kΩ~∞	1% P-P	I3 0.1	0.6	Consumption VA: 3		
	T-101HPA (U)	2.0	3-pl		IA	0°	50Hz or 60Hz	-0~0~07 . 3832400	or less				0.6kg	0
			ire	<u>110</u> √3/110V	5A	، LAG 60°		ì	–10~0~10V : 10kΩ~∞	1s or less	I1 0.1	0.3		
Box			se 4-w		1A			0~0.5~1mA : 0~5kΩ		I2 0.1				
			3-phase 4-wire	110/190V	5A			0~2.5~5mA : 0~1kΩ		I3 0.1	0.5			
					1A			4~12~20mA : 0~600Ω						
			sed loads)	110V	5A			0~50~100mV : 5kΩ~∞			0.3			
			nbalanc		1A			0~0.5~1V : 5kΩ~∞		I1 0.1				
			3-phase 3-wire (unbalanced loads)	220V	5A	LEAD 60°		0~2.5~5V : 5kΩ~∞		I3 0.1	0.6	110VAC		
	T-101SPA (U)	1.0	3-phas		1A	، 0°	50Hz or	0~5~10V : 10kΩ~∞	1% P-P or less			⁺¹⁰ % 50 and 60Hz	0.6kg	Δ
	101017 (0)	1.0	e	<u>110</u> √3/110V	5A	0° ، LAG 60°	60Hz	1~3~5V : 5kΩ~∞	1s or less	I1 0.1	0.3	Consumption VA: 3	U.UKY	
			e 4-wi	<u>110</u> /110V √3 /110V	1A									
			లి 110/190V		5A					I2 0.2 I3 0.1	0.5			
					1A									
										Deliver	y period	classificatio		

Manufacturable range

		T-101HPA, T-101HPA (U)	T-101SPA (U)				
Inpu	t	As indicated in th	e table above. *1				
Outpu	ut	0.1~20mA, 50mV~10V *2					
Auxiliary power	AC	100, 105, 110, 200, 210, 220,	115, 120V ₊₁₀ 230, 240V ⁻¹⁵ %				
supply	DC	24V, 100~120V	24V±10%				

Reference delivery period Immediate delivery Within 20 days 21 to 60 days

Symbol

product

product

product

*1 The error increases when the input current decreaes.

 $\bullet T\text{-}101\text{HPA}$...1/5 of the rated current or less

●T-101HPA(U) ... 1/5 of the rated current or less

 \bullet T-101SPA(U) ...1/10 of the rated current or less

*2 The manufacturable range for a bidirectional current output is $\pm 0.1 \sim \pm 5$ mA.

Input/Output relationships

Connection diagrams (Refer to p.156 for outer dimensions.)

*3 When only the auxiliary power supply is applied, a value close to a phase angle of 0° (power factor of 1) is output.

*4 Use a transducer "for unbalanced loads" if there is a possibility for the 3-phase load to become unbalanced.

*5 With transducers for both balanced circuits and unbalanced loads, an error may occur when the 3-phase voltage becomes unbalanced.

*6 Operation will be abnormal when the input is a negative-phase sequence.

Note 1. For low-voltage circuits, grounding of the secondary sides of the instrument voltage transformer and current transformer is unnecessary.

Power Factor Transducers

T-51/T-101 Series

T-101HPF (U)

tpe		S @			Inpu	t (AC)			Output (DC)		e/ d	Consumpt			Ħ	eriod
Outer shape	Model name	Accuracy (grade)	Phase- wire	Voltage	Current	Power factor	Frequency	Characteristics	Voltage or current and load Output	d SGN	Ripple/ Response speed	Current circuit	Voltage circuit	Auxiliary powersupply	Weight	Delivery period classification
			3-phase 3-wire	110V	5A 1A)	–1~0~1mA : 0~5kΩ –5~0~5mA : 0~1kΩ –100~0~100mV : 5kΩ~∞			I1 0.1	0.3			
	T-101HPF (U)	3.0	3-phase	220V	5A 1A	LEAD LAG 0.5~1~0.5	50Hz or	3	−1~0~1V:5kΩ~∞ −5~0~5V:5kΩ~∞ −10~0~10V:10kΩ~∞ 0~0.5~1mA:0~5kΩ	_	1% P-P or less	I3 0.1	0.6	110VAC -10 % 50 and 60Hz	0.6	0
		3.0	3-phase 4-wire	<u>110</u> /110V	5A 1A	LEAD LAG 0~1~0	or 60Hz	3	0~2.5~5mA : 0~1kΩ 4~12~20mA : 0~600Ω 0~50~100mV : 5kΩ~∞ 0~0.5~1V : 5kΩ~∞		1s or less	I1 0.1 I2 0.1	0.3	Consumption VA: 3	kg	
×			3-phase	110/190V	5A 1A	-			0~2.5~5V : 5kΩ~∞ 0~5~10V : 10kΩ~∞ 1~3~5V : 5kΩ~∞			I3 0.1	0.5			
Box			3-phase 3-wire	110V	5A 1A			1 2	0~-1/1~0V : 5kΩ~∞ 0~-5/5~0V : 5kΩ~∞ (input LEAD 0-1~0 LAG only) 0~1~0mA : 0~5kΩ 4~20~4mA : 0~600Ω	– LEAD 1Vmax LAG 5V		I1 0.1	0.3			
			3-phase	220V	5A 1A	LEAD LAG 0.5~1~0.5	50Hz		(input LEAD 0~1~0 LAG only) -1~0~1mA : 0~5kΩ -5~0~5mA : 0~1kΩ -100~0~100mV : 5kΩ~∞ -1~0~1V : 5kΩ~∞	±0.5V	1% P-P or less	I3 0.1	0.6	110VAC -10 % 50 and 60Hz	0.6	
	T-101SPF (U)	2.0	e 4-wire	<u>110</u> √3/110V	5A 1A	or LEAD LAG 0~1~0	or 60Hz	3	-5~0~5V : 5kΩ~∞ -10~0~10V : 10kΩ~∞ 0~0.5~1mA : 0~5kΩ 0~2.5~5mA : 0~1kΩ 4~12~20mA : 0~600Ω	_	1s or less	I1 0.1	0.3	Consumption VA: 3	kg	Δ
			3-phase 4-wire	110/190V	5A 1A				0~50~100mV : 5kΩ~∞ 0~0.5~1V : 5kΩ~∞ 0~2.5~5V : 5kΩ~∞ 0~5~10V : 10kΩ~∞ 1~3~5V : 5kΩ~∞			I2 0.2 I3 0.1	0.5			

Manufacturable range

		T-101HPF (U)	T-101SPF (U)					
Inpu	t	As indicated in the table above *1						
Outpu	ut	0.1~20mA, 50mV~10V *2						
Auxiliary power	AC	100, 105, 110, 200, 210, 220,	115, 120V +10 230, 240V -15 %					
supply	DC	24V, 100~120V	24V±10%					

The voltage tolerance of a 24VDC auxiliary power supply is ±10%. The voltage tolerance of a 100~120VDC auxiliary power supply is $^{+15}_{-25}$ %.

- Delivery period classification

 Symbol
 Standard product
 Quasi-standard product
 Special product

 Reference delivery period
 Immediate delivery
 Within 20 days
 21 to 60 days
- *1 The error increases when the input current decreases. •T-101HPF(U) ...1/5 of the rated current or less
 - ●T-101SPF(U) ... 1/10 of the rated current or less
- *2 The manufacturable range for a bidirectional current output is $\pm 0.1 \text{-}\pm 5\text{mA}.$ Output specifications
 - ●As indicated in the "Input/Output relationships," the outputs of a power factor transducer include an output (Output) proportional to the power factor and a lead/lag distinguishing output (SGN). The output characteristics are classified according to characteristics 1 to 3 (only the model with the characteristic of 3 is manufactured as the T-101HPF(U)).
 - SGN output
 - In the case of phase lag ... 5V \pm 0.5V, 2mA (Source: output current)
- In the case of phase lead ... 1V max, 5mA (Sink: input current)
- *3 When only auxiliary power supply is applied, a power factor close to 1 is output.
- *4 An error may occur when the 3-phase voltage becomes unbalanced.
- *5 Operation will be abnormal when the input is a negative-phase sequence.

Input/Output relationships

Connection diagrams (Refer to p.156 for outer dimensions.)

Ordering method Model name Number of units Frequency Auxiliary power supply T-101HPF (U) 3P3W LEAD0.5-1-LAG0.5 110VAC 110V 5A 60Hz 4-12-20mA 2 In the case of 3-phase, 4-wire models, Specify three values for the output. please specify the phase voltage and line voltage.

Frequency Transducers [Insulated]

T-51/T-101 Series

T-51HF

Delivery period classification

product

Reference delivery period Immediate delivery Within 20 days

Symbol

product

product

21 to 60 days

T-101SF

Outer shape	Model name	Accuracy	Inpu	ıt (AC)	Output (DC)	Ripple/	Consumption VA	Auxiliary power supply	Weight	Delivery	
Outer	woder name	(grade)	Voltage	Frequency	Voltage or current and load	Response speed		Auxiliary power supply	Weight	period classification	
	TEALIE	10	110V		0~1mA : 0~5kΩ 0~5mA : 0~1kΩ	1% P-P or less	0.3	110VAC ^{±10} % 50 and 60Hz	0.41-2		
Box	T-51HF	1.0	220V	45~55Hz 55~65Hz	4~20mA : 0~600Ω 5~55Hz 0~100mV : 5kΩ~∞		0.6	Consumption VA: 3	0.4kg	0	
ă			110V		1-57 . 5822-00	_	0.3	110VAC -15 %			
	T-101SF	0.5		45~55Hz	0.45~0.55V : 5kΩ~∞	1% P-P or less		50 and 60Hz Consumption	0.6kg	Δ	
			220V	55~65Hz	0.55~0.65V : 5kΩ~∞	- 1s or less	0.6 VA: 3				

Manufacturable range

		T-51HF	T-101SF				
Inpu	t	50~400Hz *1					
Outpu	ut	0.1~20mA, 50mV~10V *2					
Auxiliary power	AC	100, 105, 110 200, 210, 220	, 115, 120V ₊₁₀ , 230, 240V ⁺¹⁰				
supply	DC	24V, 100~120V	24V±10%				

*1 The input range is approximately ±10% of the central frequency. Example: In the case of 400Hz, input 360~440Hz.

*2 Transducers with positive/negative bidirectional output based on the central frequency can also be manufactured. However, the manufacturable ranges in regard to output are ±0.1~±5mA and ±50mV~±10V. Example: Input 45~50~55Hz; Output -1~0~1mA, -5~0~5V.

*3 When only auxiliary power supply is applied, positive-side burnout output occurs.

The voltage tolerance of a 24VDC auxiliary power supply is $\pm 10\%$.

The voltage tolerance of a 100~120VDC auxiliary power supply is $^{\scriptscriptstyle +15}_{\scriptscriptstyle -25}$ %.

Input/Output relationships

Connection diagrams (Refer to p.156 for outer dimensions.)

Note 1. For low-voltage circuits, grounding of the secondary side of the instrument voltage transformer is unnecessary.

	Model nome	Ing	out	Output		Auxiliany power oupply	Number of unite
	Model name	Voltage	Frequency	Voltage or current		Auxiliary power supply	Number of units
105	T-51HF	110V	45~55Hz	0~5V		110VAC	2
125					L		

Voltage Phase Angle Transducers [Insulated]

T-51/T-101 Series

T-101SY

	Outer snape	Model name	Accuracy		Inpu	t (AC)		Output (DC)	Ripple/	Consum	ption VA	Auxiliary power	Weight	Delivery period
	Outer	Mouel name	(grade)	Phase angle	Reference voltage	Compared voltage	Frequency	Voltage or current and load	Response speed	Reference side	Compared side	supply	Weight	classification
								—1~0~1mA : 0~5kΩ						
								—5~0~5mA : 0~1kΩ						
				LEAD60°				—100~0~100mV : 5kΩ~∞						
			1.0	~0°~				—1~0~1V : 5kΩ~∞						
				LAG60°				—5~0~5V : 5kΩ~∞						
					110	110	50Hz or 60Hz	—10~0~10V : 10kΩ~∞				110VAC		
	ğ	T-101SY			$\frac{110}{\sqrt{3}}$ /110V	$\frac{110}{\sqrt{3}}$ /110V	50112 01 00112	0~0.5~1mA : 0~5kΩ	1% P-P or less	0.3	0.3	-15 % 50 and 60Hz	0.6kg	
1	ñ	1-10101			switching	switching		0~2.5~5mA : 0~1kΩ	1s or less	0.0		Consumption	0.0Kg	
								4~12~20mA : 0~600Ω				VA: 3		
				LEAD30°				0~50~100mV : 5kΩ~∞						
			2.0	~0°~				0~0.5~1V : 5kΩ~∞						
				LAG30°				0~2.5~5V : 5kΩ~∞						
								0~5~10V : 10kΩ~∞						
								1~3~5V : 5kΩ~∞						

Manufacturable range

	/	T-101SY					
Inpu	t	As indicated in the table above. *1					
Outpu	ut	0.1~20mA, 50mV~10V *1					
Auxiliary power	AC	100, 105, 110, 115, 120V ₊₁₀ % 200, 210, 220, 230, 240V ⁺¹⁰ %					
supply	DC	24V±10%					
*1 The manufacturable ranges for bidirectional							

Delivery period classification

Symbol	©Standard		∆Special
Gymbol	product	product	product
ference delivery period	Immediate delivery	Within 20 days	21 to 60 days

- Ret With a voltage phase angle transducer, when the frequencies *2 of the standard voltage and comparative voltage are the same, a DC output proportional to the phase difference between the two is obtained. When the voltages differ in frequency, the output fluctuates continously.
- The input terminals can be used for both $\frac{110}{\sqrt{2}}$ and 110V, and either voltage can be input by changing the connection. *3

$$(P_0 - P_1 \dots \frac{110}{\sqrt{3}}, P_0 - P_2 \dots 110V)$$

If the reference and/or compared voltages fall to a value 1/3 or less than that of the rated voltage while the auxiliary power *4 supply is applied, failure may occur.

Input/Output relationships

output are $\pm 0.1 \sim \pm 5mA$ and $\pm 50mV \sim \pm 10V$.

Connection diagrams (Refer to p.156 for outer dimensions.)

Ordering method

Model name		Input		Frequency	Output	Auviliary nowar aupply	Number of units
wodel name	Voltage	Phase angle		Frequency	Voltage or current	Auxiliary power supply	Number of units
T-101SY	110/√3/110V	LEAD60°~0~LAG60°		60Hz	-100-0-100mV	110VAC	3
	-		-	-			

Specify three values for the output.

Transducers

DC Level Transducers [Non-insulated]

T-51/T-101 Series

DC level transducers input DC voltage (or current) and output DC voltage or a DC current proportional to the input, and can be used for level conversion or as a buffer for power transducer output.

Use an isolator when insulation is required between the input and output.

Applications

- Level conversion or buffer between various equipment
- •Level conversion or buffer for power transducer output

T-51DL

Delivery period classification								
Symbol	©Standard	○Quasi-standard	∆Special					
Symbol	product	product	product					
Reference delivery period	Immediate delivery	Within 20 days	21 to 60 days					

shape	Model	Model Accuracy			Output (DC	Auxiliary power	Moight	Delivery period	
Outer	name	name (grade) Input (DC) and input resistance		ice	Voltage or current and load	Ripple/Response speed	supply	Weight	classification
Box	T-51DL	0.25	100mV 1V 5V 10V 1~5V 1mA 5mA 4~20mA	rop:	1mA : 0~10kΩ 5mA : 0~2kΩ 4~20mA : 0~600Ω 100mV : 500Ω~∞ 1V : 500Ω~∞ 5V : 500Ω~∞ 10V : 1kΩ~∞ 1~5V : 500Ω~∞	1% P-P or less 0.2s or less	110VAC ⁺¹⁰ % 50 and 60Hz Consumption VA: 3	0.4kg	0

Manufacturable range

	_	T-51DL		
Input		60mV~300V, 0.5mA~0.1A		
Outpu	ut	0.1~20mA, 50mV~10V		
Auxiliary power	AC	100, 105, 110, 115, 120V ₊₁₀ % 200, 210, 220, 230, 240V ⁻¹⁵ %		
supply	DC	24V±10%		

*1 Resistance between input terminals.

	•		
Input	60mV~50V	over 50V~300V	0.5mA~0.1A
Input resistance	100kΩ	2kΩ/V	Input voltage drop: 200mV or less

*2 Transducers with positive/negative bidirectional input and positive/negative bidirectional output can also be manufactured. The manufacturable ranges for bidirectional output are ±50mV~±10V and ±0.1~±20mA.

*3 The input and output are not insulated.

*4 Please inquire separately regarding input specifications exceeding 300V.

■Usage examples

Output Input and output are not insulated. Input Auxiliary power supply Input Fig. 1 T-51DL

Connection diagrams (Refer to p.156 for outer dimensional drawings)

Input/Output relationships

Ordering method

Model name	Input Voltage or current	Output Voltage or current	Auxiliary power supply	Number of units
T-51DL	4-20mA	0-5V	110VAC	2
·		<u> </u>	 	

Transducers

DC Reverse Transducers [Non-insulated]

T-51/T-101 Series

DC reverse transducers input DC voltage (or current) and output DC voltage or DC current inversely proportional to the input; for example, as the input signal increases from 0% to 100%, the output signal decreases from 100% to 0%.

Applications

- Monitoring of deviation amount in combination with devices such as a position detection sensor or temperature transducer
- •To create a fail-safe arrangement in the event of losing control power supply

Delivery period classification

Symbol	©Standard	○Quasi-standard	∆Special
Symbol	product	product	product
eference delivery period	Immediate delivery	Within 20 days	21 to 60 days
	Symbol	Symbol product	Symbol Standard OQuasi-standard product product ference delivery period Immediate delivery Within 20 days

shape	Model	Accuracy		nd input resistance	Output (DC)	Output (DC)			Delivery period
Outer	name	(grade)	input (DC) a	id input resistance		Ripple/Response speed	supply	Weight	classification
Box	T-51DR	0.25	0~100mV 0~1V 0~5V 0~10V 1~5V 0~1mA 0~5mA 4~20mA	100kΩ or more Input voltage drop: 200mV or less	$\begin{array}{c} 1{\sim}0\text{mA}:0{\sim}10\text{k}\Omega\\ 5{\sim}0\text{mA}:0{\sim}2\text{k}\Omega\\ 20{-}4\text{mA}:0{\sim}600\Omega\\ 100{-}0\text{mV}:500\Omega{-}\infty\\ 1{\sim}0\text{V}:500\Omega{-}\infty\\ 5{\sim}0\text{V}:500\Omega{-}\infty\\ 5{\sim}0\text{V}:500\Omega{-}\infty\\ 10{-}0\text{V}:1\text{k}\Omega{-}\infty\\ 5{\sim}1\text{V}:500\Omega{-}\infty\end{array}$	1% P-P or less 0.2s or less	110VAC ⁺¹⁰ % 50 and 60Hz Consumption VA: 3	0.4kg	0

Manufacturable range

	/	T-51DR			
Input		60mV~300V, 0.5mA~0.1A	*3		
Output		0.1~20mA, 50mV~10V			
Auxiliary power	AC	100, 105, 110, 115, 120V ₊₁₀ 200, 210, 220, 230, 240V ⁻¹⁵ %			
supply	DC	24V±10%			

*1 Resistance between input terminals

Input	60mV~50V	over 50V~300V	0.5mA~0.1A
Input resistance	100kΩ	2kΩ/V	Input voltage drop: 200mV or less

*2 The input and output are not isolated.

*3 Please inquire separately regarding input specifications exceeding 300V.

Usage examples

Input/Output relationships

Connection diagrams (Refer to p.156 for outer dimensions.)

Model name	1	Input	Output		Auxiliant neuror ounnly		Number of unite
woder name		Voltage or current	Voltage or current	Auxiliary power supply	Number of units		
T-51DR		0-5V	20-4mA		110VAC		3

]Isolators [Insulated]

T-51/T-101 Series

Isolators provide insulation between DC circuits and measurement equipment, and between various sensors and control equipment.

Isolators can be used as a buffer or level exchange between input/output.

Applications

- Insulation between DC circuits and measurement equipment
- Insulation interface between each sensor and other equipment such as computers or data loggers

Insulation between separate circuits

T-101IS Delivery period classification

Derivery period classification							
Symbol	©Standard	○Quasi-standard	∆Special				
Symbol	product	product	product				
Reference delivery period	Immediate delivery	Within 20 days	21 to 60 days				

shape	Model	Accuracy	Input (DC) and input registered	Output (DC)		Dielectric strenath between	Auxiliary	Weight	Delivery period
Outer	name	(grade)	Input (DC) and input resistance	Voltage or current and load	Ripple/Response speed			weight	classification
Box	T-101IS	0.25	60mV 1V 1V 100kΩ or more 10V 100kΩ or more 1~5V 300kΩ or more 300V : 600kΩ or more 1mA 1mA Input voltage drop: 4~20mA 200mV or less	1mA : 0~5kΩ 5mA : 0~1kΩ 4~20mA : 0~600Ω 100mV : 5kΩ~∞ 1V : 5kΩ~∞ 5V : 5kΩ~∞ 10V : 10kΩ~∞ 1~5V : 5kΩ~∞	1% P-P or less 0.5s or less	2000VAC 2000VDC for 1min	110VAC ¹⁰ / ₁₅ % 50 and 60Hz Consumption VA: 3	0.6kg	0

Manufacturable range

/		T-101IS	
Input		60mV~300V, 0.5mA~0.1A	*4
Output		0.1~20mA, 50mV~10V	
Auxiliarv	۸C	100, 105, 110, 115, 120V ₊₁₀ 200, 210, 220, 230, 240V ⁻¹⁵ %	
Auxiliary power supply	AC	200, 210, 220, 230, 240V ⁻¹⁵ ⁷⁶	
	DC	24V±10%	

*1 Resistance between input terminals

Input 60mV~50V over 50V~300V 0.5mA~0.1A	
Input 60mV~50V over 50V~300V 0.5mA~0.1A	
Input resistance 100kΩ 2kΩ/V Input voltage drop: 200m	or less

*2 Combine with a shunt if the current input exceeds 0.1A.

*3 Isolators that provide positive/negative bidirectional output or positive direction-only output for positive/negative bidirectional input can also be manufactured.

The manufacturable ranges for a bidirectional output are ± 50 mV $-\pm 10$ V and $\pm 0.1 - \pm 5$ mA. *4 Please inquire separately regarding input specifications exceeding 300V.

Usage examples

Ordering method				
Model name	Input Voltage or current	Output Voltage or current	Auxiliary power supply	Number of units
T-101IS	60mV	0-1mA	110VAC	7
			for hidiroptional output	

- Specify three values for bidirectional output.

High-speed Isolators [Insulated]

T-51/T-101 Series

(Response speed: 1ms)

High-speed isolators provide insulation between DC circuits and measurement devices, and between various sensors and control equipment. They operate at high response speeds, enabling use in high-speed control circuits and high-speed measurement applications.

Applications

Model

ape

Insulation of real-time measurement signals

Insulation of high-speed control systems

Accuracy

T-101ISQ

ivery period classification					
	©Standard		∆Special		

		Symbol	product	product	product
	F	Reference delivery period	Immediate delivery	Within 20 days	21 to 60 days
Output (DO)	Dielectric				
Output (DC)		strength between	Auxiliary	Weight	Delivery period
age or current and load	Ripple/Response speed		power supply	weight	classification
1mA : 0~5kΩ					

Deli

SI						atronath hatwaan			
Outer	name	(grade)	Input (DC) and input resistance	Voltage or current and load	Ripple/Response speed	strength between input and output		Weight	classification
Box	T-101ISQ	0.25	60mV 1V 1V 100kΩ or more 1~5V 100kΩ or more 1~5V 100kΩ or more 150V : 300kΩ or more 300V : 600kΩ or more 1mA Input voltage drop: 5mA 200mV or less	$\begin{array}{c} 1mA: 0{\sim}5k\Omega\\ 5mA: 0{\sim}1k\Omega\\ 4{\sim}20mA: 0{\sim}600\Omega\\ 100mV: 5k\Omega{\sim}\infty\\ 1V: 5k\Omega{\sim}\infty\\ 5V: 5k\Omega{\sim}\infty\\ 10V: 10k\Omega{\sim}\infty\\ 10V: 10k\Omega{\sim}\infty\\ 1{\sim}5V: 5k\Omega{\sim}\infty\end{array}$	1% P-P or less 1ms or less	2000VAC 2000VDC for 1min	110VAC ⁺¹⁰ / ₋₁₅ % 50 and 60Hz Consumption VA: 3	0.6kg	Δ

Manufacturable range

		T-101ISQ	
Input		60mV~300V, 0.5mA~0.1A	*4
Output		0.1~20mA, 50mV~10V	
Auxiliary	10	100, 105, 110, 115, 120V ₊₁₀ 200, 210, 220, 230, 240V ⁻¹⁵ %	
Auxiliary power	AC	200, 210, 220, 230, 240V ^{-15 70}	
supply	DC	24V±10%	

*1 Resistance between input terminals

		-		
Input		60mV~50V	over 50V~300V	0.5mA~0.1A
Input resistan	ce	100kΩ	2kΩ/V	Input voltage drop: 200mV or less

*2 Combine with a shunt if the current input exceeds 0.1A.

Isolators that provide positive/negative bidirectional output or positive direction-only output for *3 positive/negative bidirectional input can also be manufactured.

*4 The manufacturable ranges for bidirectional output are $\pm 50 \text{mV} \sim \pm 10 \text{V}$ and $\pm 0.1 \sim \pm 5 \text{mA}$. Please inquire separately regarding input specifications exceeding 300V.

Input/Output relationships

Connection diagrams (Refer to p.156 for outer dimensions.)

Ordering method Outp Model name Number of units Auxiliary power supply T-101ISQ 0-5V 4-20mA 110VAC

Specify three values for bidirectional output.

Limiters [Non-insulated]

T-51/T-101 Series

Limiters restrict the variation range of an output signal and restrict the output to values outside the preset limit range when a signal outside the limit range is input. CAL signals proportional to setting values are output, allowing accurate settings and set

values to be checked.

Applications

Maximum and minimum value retention during abnormal operation of a control device

- Prevent full opening/closing of devices such as control valves
- Prevent of off-scale input to computers

Symbol	©Standard	○Quasi-standard	∆Special
Symbol	product	product	product
Reference delivery period	Immediate delivery	Within 20 days	21 to 60 days

	Outer sha	Model name	racy (grade)
	Box	T-51LM	0.25

Outer shape	Model	Accu- racy	Inpu	t (DC) and	Output (I)		Setting	Auxiliary	Weight	Delivery period
Outer	name	(grade)	input	resistance	Voltage or current and load	Ripple/Response speed	Accuracy	Range (CAL output)	power supply	weight	classification
Box	T-51LM	0.25	100mV 1V 5V 10V 1~5V 1mA 5mA 0~20mA 4~20mA	 100kΩ or more Input voltage drop: 200mV or less 	$\begin{array}{c} 1mA:0{\sim}5k\Omega\\ 5mA:0{\sim}1k\Omega\\ 0{\sim}20mA:0{\sim}600\Omega\\ 4{\sim}20mA:0{\sim}600\Omega\\ 100mV:5k\Omega{\sim}\infty\\ 1V:5k\Omega{\sim}\infty\\ 1V:5k\Omega{\sim}\infty\\ 5V:5k\Omega{\sim}\infty\\ 10V:10k\Omega{\sim}\infty\\ 1{\sim}5V:5k\Omega{\sim}\infty\end{array}$	1% P-P or less 0.2s or less	±0.25%	$\label{eq:constraint} \begin{array}{c} \bullet Unidirectional output\\ LOW: 0~50\% (0~5VDC)\\ HIGH: 50~100\% (5~10VDC)\\ \bullet Bidirectional output\\ LOW: -100~0\% (-10~0VDC)\\ HIGH: 0~100\% (0-10VDC)\\ CAL output load resistance:\\ 10k\Omega{\sim}\infty \end{array}$	110VAC ⁺¹⁰ % 50 and 60Hz Consumption VA: 3	0.4kg	0

Manufacturable range

	/	T-51LM		
Inpu	t	60mV~10V, 0.5mA~0.1A		
Output		0.1~20mA, 50mV~10V		
Auxiliary AC		100, 105, 110, 115, 120V ₊₁₀ 200, 210, 220, 230, 240V ⁻¹⁵ %		
supply	DC	24V±10%		

- *1 The input and output are not insulated.
- *2 Limiters with bidirectional input and positive/negative bidirectional output can also be manufactured. The manufacturable ranges for bidirectional output are $\pm 50 \text{mV} \sim \pm 10 \text{V}$ and $\pm 0.1 \sim \pm 5 \text{mA}$.

Setting procedure (Please carefully read the accompanying instruction manual.)

Lower limit	While measuring the lower-limit setting output voltage (between the LOW CAL. OUT and COM terminals), vary the lower-limit setter (LO) to set the lower limit value.
Upper limit	While measuring the upper-limit setting output voltage (between the HIGH CAL. OUT and COM terminals), vary the upper-limit setter (HI) to set the upper limit value.

(Layout of setters and output terminals)

Input/Output relationships

Model name	Input Voltage or current	Output Voltage or current	Auxiliary power supply	Number of units
T-51LM	4-20mA	4-20mA	110VAC	5
		\uparrow		

Adders [Non-insulated]

T-51/T-101 Series

Adders can be used to input several DC voltages or direct currents, perform addition according to the specified ratio, and output a DC voltage or direct current proportional to the addition result. An adder can also be used to perform actions such as concentrating power when combined with a power transducer.

Applications

•Synthesis of active powers (reactive powers) of multiple circuits

T-101AD

Delivery period classification						
Symbol	©Standard	OQuasi-standard	∆Special			
Symbol	product	product	product			
Reference delivery period	Immediate delivery	Within 20 days	21 to 60 days			

Outer shape	Model name	Accu- racy (grade)	Input (DC) input resis	·	Number of circuits	Output (DC) Voltage or current and load	Ripple/Response speed	Auxiliary power supply	Weight	Delivery period classification
Box	T-101AD	0.5	10V 1~5V 1mA 5mA	kΩ or more it voltage drop: mV or less	4 (max.)	1mA : 0~5kΩ 5mA : 0~1kΩ 4~20mA : 0~600Ω 100mV : 5kΩ~∞ 1V : 5kΩ~∞ 5V : 5kΩ~∞ 10V : 10kΩ~∞ 1~5V : 5kΩ~∞	1% P-P or less 0.2s or less	110VAC ⁺¹⁰ % 50 and 60Hz Consumption VA: 3	0.6kg	0

Manufacturable range

	/	T-101AD	
Inpu	t	50mV~10V, 0.5~20mA	
Output		0.1~20mA, 50mV~10V	
Auxiliary power	AC	100, 105, 110, 115, 120V ₊₁₀ 200, 210, 220, 230, 240V ⁻¹⁵ %	
power		200, 210, 220, 230, 240V	
supply	DC	24V±10%	

*1 Method for designating addition proportions

For example, if the inputs are Pa=5V (1000kW), PB=5V (3000kW) and Pc=5V (5000kW), and the output is 5V (9000kW), the addition proportions = $\frac{1}{9}$: $\frac{3}{9}$: $\frac{5}{9}$.

- *2 If the number of inputs exceeds four, addition can be performed using 2 or more adders.
- *3 Adders that provide positive/negative bidirectional output or positive direction-only output for positive/negative bidirectional input can also be manufactured. The manufacturable ranges for bidirectional output are ±50mV~±10V and ±0.1~±5mA.

I he manufacturable ranges for bidirectional output are ±50mV~±10V and ±0.1~±5mA *4 The input and output are not insulated.

- *5 For 4–20mA, an input of 0mA is regarded as -4mA for calculations.
- *6 For 1–5V, an input of 0V is regarded as -1V for calculations.

■Usage examples

Input/Output relationships

Connection diagrams (Refer to p.156 for outer dimensions.)

Ordering method

Model name	Input	Output	Auxiliary power supply	Number of units
modelmanie	Input value/input quantity of each circuit	Output value/output quantity	raxinary porror cappiy	
T-101AD	PA : 5V/1000kW, PB : 5V/2000kW	5V/3000kW	110VAC	1
			three values for bidirectional ou	•

The "addition proportions" are indicated on the rating nameplate instead of the "input quantity/output quantity" values.

Resistance-bulb Temperature Transducers

T-51/T-101 Series

These temperature transducers measure temperature by the change in resistance value of a resistance bulb and output DC current or DC voltage proportional to the temperature of the part measured.

T-51TP T-101TPZ

Applications

- •Transmission of temperature signals to temperature monitors or temperature control equipment
- •Temperature measurement of things such as voltage transformer oil

Delivery period classification							
Symbol	©Standard	OQuasi-standard	∆Special				
Symbol	product	product	product				
Reference delivery period	Immediate delivery	Within 20 days	21 to 60 days				

Outor chang	Model	Accu- racy	Between input and	Input		Output (D	Input Output (DC)			Weight	Delivery period
Outor	name	(grade)	output	Resistance bulb	Voltage or current and load	Ripple	Response speed	Burnout	supply	weight	classification
Dov	T-51TP	0.5	Non-insulated	Pt 100Ω (at0°C) Pt 50Ω (at0°C)	1mA : 0~5kΩ 5mA : 0~1kΩ 4~20mA : 0~600Ω 100mV : 5kΩ~∞	1% P-P	2s or less	l les estises	110VAC ⁺¹⁰ -15% 50 and 60Hz	0.4kg	0
à	T-101TPZ	0.5	Insulated	Cu 10Ω (at25°C) (besides the above: Ni)	1V : 5kΩ~∞ 5V : 5kΩ~∞ 10V : 10kΩ~∞ 1~5V : 5kΩ~∞	or less	2s or less	Upper limit	Consumption VA: 3	0.7kg	0

Manufacturable range

		T-51TP, T-101TPZ
Input		Input temperature range: -200~500°C
Output		0.1~20mA, 50mV~10V
Auxiliary power supply DC		100, 105, 110, 115, 120V ₊₁₀ 200, 210, 220, 230, 240V ⁺¹⁵ %
		24V, 100~120V

The voltage tolerance of a 24VDC auxiliary power supply is $\pm 10\%$.

The voltage tolerance of a 100~120VDC auxiliary power supply is $^{+15}_{-25}$ %.

- *1 Use these temperature transducers in combination with a 3-wire resistance bulb. If a 2-wire resistance bulb is used, error may occur due to the influence of lead-wire resistance.
- *2 For 3-wire resistance bulbs, set the resistance values of the respective lead wires between the resistance bulb and the transducer to 10Ω or less. Additionally, set the difference among the lead-wire resistance values to within the values in the table below.

Resistance bulb	Pt100Ω • JPt100Ω	Pt50Ω	Cu10Ω] ті
Difference among lead-wire resistance values	0.2Ω or less	0.1Ω or less	0.02Ω or less] th

The temperature error due to resistance differences in the table on the left is approximately 0.5K.

*3 The accuracy (grade) indicates the accuracy of the temperature transducer only and does not include the error of the resistance bulb. Additionally, the customer is requested to provide the resistance bulb.

*4 When resistance bulb input stops, burnout output is performed on the positive side.

Examples of standard input specifications

Resistance bulb	Minimum span	Input measurement range (°C)						
Pt100Ω (at0°C) JPt100Ω (at0°C)	50°C	0~100 0~250 -20~ 80 - 50~200 0~120 0~300 -40~ 60 -100~200						
Pt50Ω (at0°C)	100°C	0~150 -50 -50 0~200 -50~150						
Cu10Ω (at25°C)	100°C	(Please specify for cases other than listed above.)						
Ni and resistance bulbs other than the above	Please specify the resistance bulb.	e input temperature range and the temperature/resistance value relationship of the						

Selection between insulated/non-insulated (between input and output)

Make a selection according to the temperature sensor configuration explained in the following table.

Temperature sensor	Temperature transducer
Insulated with respect to the object measured	Both insulated and non-insulated units can be used. However, if the temperature sensor is located close to a power supply line or control equipment, common mode noise due to electromagnetic induction may occur. Use an insulated unit in this case.
Non-insulated with respect to the object measured	Make sure to use insulated units to prevent circuit noise interference due to the common potential generated in temperature sensors and the penetration of external noise.

Input/Output relationships

Inspection and adjustment

Perform the following procedure to check whether or not a transducer is operating normally.

- ① Install an inspection resistor at (near) the installation location of the resistance bulb and connect the inspection resistor.
- ② Check whether or not the transducer outputs a value corresponding to the inspection temperature. If there is an error in output, adjust the transducer using the output adjuster.
- A GR-2 standard resistor (sold separately) can be used as an inspection resistor (see p.149).

Connection diagrams (Refer to p.156 for outer dimensions.)

Ordering method							
	Ing	out	1	Output	1		
Model name	Temperature	resistance bulb		Voltage or current		Auxiliary power supply	Number of units
T-101TPZ	0–200°C	Pt100Ω		4–20mA		110VAC	10

T-51/T-101 Series

Thermocouple temperature transducers use the electromotive force of the thermocouple to measure the temperature and output DC current or DC voltage proportional to the temperature of the part being monitored.

Applications

- •Temperature measurement of devices such as high-temperature furnaces
- Transmission of temperature signals to temperature monitors or temperature control equipment

T-101TCZ

Delivery period classification

Symbol	©Standard	○Quasi-standard	∆Special
Symbol	product	product	product
Reference delivery period	Immediate delivery	Within 20 days	21 to 60 days

shape	Model name	Accuracy (grade)	Between input	li	Input Output (DC)			Auxiliary power	Weight	Delivery period		
Outer	Model name	Accu (gra	and output	Thermocouple	Measurable range	Minimum span	Voltage or current and load	Ripple/Response speed	Burnout	supply	weigin	classification
	-			K (Chromel/Alumel)	-200~1200°C	100°C		110VAC				
	T-101TC		Non- insulated	T (Copper/Constantan)	-200~ 350°C	120°C	1mA : 0~5kΩ 5mA : 0~1kΩ 4~20mA : 0~600Ω			110VAC	0.6kg	0
Box		0.5		J (Iron/Constanan)	-200~ 800°C	100°C	0~100mV : 5kΩ~∞ 1V : 5kΩ~∞	1% P-P or less 1s or less	Upper limit	50 and 60Hz		
	T-101TCZ		Insulated	E (Chromel/Constantan)	-200~ 800°C	100°C	5V : 5kΩ~∞ 10V : 10kΩ~∞			Consumption VA: 3	0.7kg	0
				R, S (rhodium/platinum)	0~1600°C	500°C	1~5V ∶5kΩ~∞					

Manufacturable range

		T-101TC, T-101TCZ
Inpu	t	As indicated in the table above.
Outpu	ut	0.1~20mA, 50mV~10V
Auxiliary power	AC	100, 105, 110, 115, 120V 200, 210, 220, 230, 240V
supply	DC	24V±10%

The voltage tolerance of an AC auxiliary power supply is $^{+10}_{-15}$ %.

- *1 Please specify the input temperature range so that it is within the measurable range of the thermocouple and ensure that the span value is at least the minimum span value. Example: In the case of an R thermocouple, 0~500°C or 100~600°C is specified as the input temperature range.
- *2 The input signal source resistance (thermocouple sensor resistance value + compensation wire round trip resistance value) must be 100Ω or less.
 - Influence of the signal source resistance: approx. $0.1\mu V/\Omega$ or less with respect to the thermal electromotive force.
- *3 The accuracy (grade) indicates the accuracy of the temperature transducer only and does not include the error of the thermocouple sensor. Additionally, the customer is required to provide the thermocouple sensor.

*4 When thermocouple input stops, burnout output is performed on the positive side.

Examples of standard input specifications

Input sensor		Measurement range (°C)							
к	0~ 100 0~ 500	0~ 150 0~ 600	0~ 200 0~ 800	0~ 250 0~1000	0~ 300 0~1200	0~ 400			
(CA)	100~ 200	300~ 600	400~ 800	400~1000	600~ 800	600~1200			
	-50~ 150	-100~ 300							
т	0~ 120	0~ 150	0~ 200	0~ 300	0~ 400				
(CC)	-50~ 100 -200~ 200	-50~ 150 -200~ 400	-50~ 200	-100~ 50	-100~ 100				
J	0~ 100 0~ 400	0~ 150 0~ 500	0~ 200 0~ 600	0~ 250 0~ 800	0~ 300				
(IC)	-50~ 100	-50~ 150							
	0~ 100	0~ 300	0~ 500	0~ 600					
E (CRC)	50~ 150	300~ 600							
	-10~ 90								
R	0~1000 0~1600	0~1200	0~1300	0~1400	0~1500				
S	300~1300 1000~1400	400~1400 1100~1600	400~1600 1300~1600	800~1300	800~1600				

Selection between insulated/non-insulated (between input and output)

Please make a selection according to the temperature sensor configuration explained in the following table.

Temperature sensor	Temperature transducer			
Insulated with respect to the measured object	Both insulated and non-insulated units can be used. However, if the temperature sensor is located close to a power supply line or control equipment, common mode noise due to electromagnetic induction may occur. Use an insulated unit in this case.			
Non-insulated with respect to the measured object	Make sure to use an insulated unit to prevent circuit noise interference due to the common potential generated in temperature sensors and the penetration of external noise.			

Inspection and adjustment

Perform the following procedure to check whether or not a transducer is operating normally.

(The inspection temperature is the maximum input temperature.)

- Measure the temperature (reference temperature) in the immediate vicinity of the transducer.
- (2) Using the thermal electromotive force table in JIS C 1602, please note the thermal electromotive forces corresponding to the transducer maximum input temperature and the reference temperature.
- ③ Apply a DC voltage equivalent to (electromotive force of the maximum input temperature electromotive force of the reference temperature) to the input side of the transducer.
- (4) Check whether or not an output equivalent to the maximum input temperature is output. If there is an error in the output, adjust the transducer using the output adjuster.

Input/Output relationships

Connection diagrams (Refer to p.156 for outer dimensions.)

Madalnama	Ing	out]	Output	Augilian (new or ound)		Number of unite	
Model name	Temperature	thermocouple		Voltage or current	Auxiliary power supply		Number of units	
T-101TC	0-300°C	Т		0-5V	110VAC		10	

First-order Lag Transducers [Non-insulated]

T-51/T-101 Series

These transducers apply a time constant to the DC input signal and delay the response speed.

The time constant can be set to any value between 1 and 60 seconds.

Applications

Averaging highly fluctuating signals

Prevents control system oscillation

T-51DS

Delivery period classification

belivery period elassification									
Symbol	©Standard	○Quasi-standard	∆Special						
Symbol	product	product	product						
Reference delivery period	Immediate delivery	Within 20 days	21 to 60 days						

Transducers

shape	Model name	Accuracy	Input (DC) and input resistance		Output (DC)			Weight	Delivery
Outer	Model Hame	class	input (DC) and input resistance	Voltage or current and load Time constant Ripple		Ripple	Auxiliary power supply	weight	period classification
Box	T-51DS	0.5	100mV 1V 5V 100kΩ or more 10V 1~5V 1mA Input voltage 5mA drop: 200mV 4~20mA or less	1mA : 0~5kΩ 5mA : 0~1kΩ 4~20mA : 0~600Ω 100mV : 5kΩ~∞ 1V : 5kΩ~∞ 5V : 5kΩ~∞ 10V : 10kΩ~∞ 1~5V : 5kΩ~∞	1 to 60s Accuracy: ±20% (with respect to set value)	1% P-P or less	110VAC ⁺¹⁰ % 50 and 60Hz Consumption VA: 3	0.4kg	0

Manufacturable range

	/	T-51DS			
Input		60mV~10V, 0.5mA~0.1A			
Output		0.1~20mA, 50mV~10V			
Auxiliary power supply	AC	100, 105, 110, 115, 120V ₊₁₀ 200, 210, 220, 230, 240V ⁻¹⁵ %			
	DC	24V±10%			

- *1 The input and output are not insulated.
- *2 The time constant can be set arbitrarily.

Time constant, time interval and response speed relationship

Usage example

VТ

ſ

СТ

Active power

transduce

T-101HW

Connection diagrams (Refer to p.156 for outer dimensions.)

Front view

•For measurement of moderate time interval active power demand

First-order lag

Time constant τ=60

second setting

transduce T-51DS

Instantaneous value

3-minute time interval demand value

Model name	Input Voltage or current	Output Voltage or current	Auxiliary power supply	Number of units
T-51DS	4-20mA	0-5V	110VAC	2

T-51/T-101 Series

AC current demand transducers output DC current or DC voltage that is proportional to the average value (demand value) of the AC current within a specified time interval.

Applications

- Protection of transmission lines
- Checking transformer load state

T-101HAA (DS)

Delivery per	iod classific	ation	
Symbol	©Standard	○Quasi-standard	∆Special
Symbol	product	product	product
Reference delivery period	Immediate delivery	Within 20 days	21 to 60 days

1

output D

0

to Time t → (Time interval)

0.95 1

Outer shape	Model name	Accuracy	Inpu	ut (AC)	Outpu	t (DC)		Consumption VA	Auxiliary power supply	Weight	Delivery period
Outer	Wodername	(grade)	Current	Frequency	Voltage or current and load	Time interval (to)	Ripple		Auxiliary power supply	weight	classification
Box	T-101HAA(DS)	0.5	5A 1A	50 and 60Hz	1mA : 0~5kΩ 5mA : 0~1kΩ 4~20mA : 0~600Ω 100mV : 5kΩ~∞ 1V : 5kΩ~∞ 5V : 5kΩ~∞ 10V : 10kΩ~∞ 1~5V : 5kΩ~∞	15s 30s 60s 120s 150s 180s	1% P-P or less	0.1	110VAC ⁺¹⁰ % 50 and 60Hz Consumption VA: 5	0.5kg	0

continuously.

the time interval (3to).

The time interval (to) refers to the time required for

an output (Io) to reach a value corresponding to 95%

of a fixed input value (I) when the input (I) is applied

The output becomes substantially 100% at 3 times

Manufacturable range

/	_	T-101HAA (DS)			
Input		0.1~5A			
Output		0.1~20mA, 50mV~10V			
Auxiliary power supply	AC	100, 105, 110, 115, 120V ₊₁₀ % 200, 210, 220, 230, 240V ⁺¹⁰ %			
supply	DC	24V±10%			

*1 Accuracy of time interval (to): ±20% The accuracy of the time interval is the accuracy of the time at which the output reaches a value corresponding to 95% of a fixed value when input.

*2 Error may occur when the waveform of the input current is distorted. For example, when the third harmonic content is 15%, the error is approx. ±2.0%.

Input/Output relationships

mA V mA V 5 20 5 1 DC output → DC output → 12 3 0.5 2.5 4 0 0 0 0 2.5 0.5 2.5 0.5 А А 0 AC input AC input

Connection diagrams (Refer to p.156 for outer dimensions.)

Note 1. For low-voltage circuits, grounding of the secondary side of the current transformer is unnecessary.

Model name	Input	Timo intorval	Output	Auxiliany powor cupply	Number of unite
Model hame	Current	Time interval	Voltage or current	Auxiliary power supply	Number of units
T-101HAA (DS)	5A	180 seconds	4-20mA	110VAC	1

AC Voltage Demand Transducers (Moderate Time Interval) [Insulated]

T-51/T-101 Series

AC voltage demand transducers output DC current or DC voltage that is proportional to the average value (demand value) of the AC voltage within a specified time interval.

Applications

- Monitoring of voltage due to load fluctuation
- For detecting abnormal voltages in devices such as small-scale generators
- For preventing the detection of error due to flicker

T-101HAV (DS)

Delivery period classification

Symbol	©Standard		∆Special
Gymbol	product	product	product
Reference delivery period	Immediate delivery	Within 20 days	21 to 60 days

Outer shane	- Model name	Accuracy	Inpu	ut (AC)	Outpu	Consumption VA	Auxiliary power supply	Weight	Delivery period		
Outer	Woder name	(grade)	Voltage	Frequency	Voltage or current and load	Time interval (to)	Ripple		Auxiliary power suppry	weight	classification
Box	T-101HAV (DS)	0.5	150V 300V	50 and 60Hz	1mA : 0~5kΩ 5mA : 0~1kΩ 4~20mA : 0~600Ω 100mV : 5kΩ~∞ 1V : 5kΩ~∞ 5V : 5kΩ~∞ 10V : 10kΩ~∞ 1~5V : 5kΩ~∞	15s 30s 60s 120s 150s 180s	1% P-P or less	150V : 0.4 300V : 0.8	110VAC ⁺¹⁰ / ₋₁₅ % 50 and 60Hz Consumption VA: 5	0.5kg	0

Manufacturable range

	/	T-101HAV (DS)			
Input		50~300V			
Outpu	ut	0.1~20mA, 50mV~10V			
Auxiliary power	AC	100, 105, 110, 115, 120V ₊₁₀ 200, 210, 220, 230, 240V ⁺¹⁰ %			
supply	DC	24V±10%			

*1 Accuracy of time interval (to): ±20% The accuracy of the time interval is the accuracy of the time at which the output reaches a value corresponding to 95% of a fixed value when input.

*2 Error may occur when the waveform of the input voltage is distorted. For example, when the third harmonic voltage is 15%, the error is approx. $\pm 2.0\%$.

Input/Output relationships

the time interval (3to).

output

Connection diagrams (Refer to p.156 for outer dimensions.)

Note 1. For low-voltage circuits, grounding of the secondary side of the instrument voltage transformer is unnecessary.

Model name	Input Voltage	Time interval	Output Voltage or current	Auxiliary power supply	Number of units
T-101HAV (DS)	150V	30 seconds	5V	110VAC	2

Current Transducers with Power Flow

T-51/T-101 Series

Current transducers receive the current and voltage of 3-phase AC circuits as input, distinguish the power flow direction (receiving or sending), and output DC current or DC voltage proportional to the current value that was input.

T-101HAA (D)

Delivery period classification

Symbol	©Standard	OQuasi-standard	∆Special	
Symbol	product	product	product	
Reference delivery period	Immediate delivery	Within 20 days	21 to 60 days	

Transducers

	Outer snape	Model name	Accuracy	Circuit		Ir	put (AC)		Output (DC)	Ripple/	Consum	ption VA	Auxiliary	Weight	Delivery
Ċ		WOUEI Hame	(grade)	Gilcuit	Voltage	Current	Frequency	Distinguishable phase angle range	Voltage or current and load	Response speed	Current circuit	Voltage circuit	power supply	weight	period classification
					110V	(Sending) (Receiving)			(Sending) (Receiving)			0.3			
	×		0.5	AC circuit	220V	-5A~0~5A	50 and	●Receiving -85°~0°~85°	-1~0~1mA : 0~5kΩ -5~0~5mA : 0~1kΩ -20~0~20mA : 0~600Ω	1% P-P or less	0.1	0.6	110VAC +10 %	0.01.0	
	ХОЯ	T-101HAA (D)	0.5	3-phase /	110V	(Sending) (Receiving)	60Hz	(275°) ●Sending 95°~180°~265°	-100~0~100mV : 5kΩ~∞ -1~0~1V : 5kΩ~∞ -5~0~5V : 5kΩ~∞ -10~0~10V : 10kΩ~∞	1s or less	0.1	0.3	50 and 60Hz Consumption VA: 3	0.6ку	0
					220V	-1A~0~1A			-10~0~10V . 10K <u>1</u> 2~∞			0.6			

Manufacturable range

	/	T-101HAA (D)		
Input		As indicated in the table above.		
Outpu	ut	0.1~20mA, 50mV~10V		
Auxiliary power	AC	100, 105, 110, 115, 120V ₊₁₀ 200, 210, 220, 230, 240V ⁻¹⁵ %		
supply	DC	24V±10%		

*1 An error may occur when the waveform of the input current is distorted.

- For example, when the third harmonic content is 15%, the error is approx. $\pm 2.0\%$. *2 The power flow distinguishing function operates at 50% or more of the rated voltage. At less than 50% of the rated voltage, output with the input being regarded as a receiving current
- *3 For the power flow, the detected current phase is distinguished.
- *4 A model with unidirectional output specifications can also be manufactured.

Input	Output		
(Sending) (Receiving)	0~50~100mV		
-5~0~5A	0~2.5~5V		
-1~0~1A	4~12~20mA		

Application example

Connection diagrams (Refer to p.156 for outer dimensions.)

Note 1. For low-voltage circuits, grounding of the secondary sides of the instrument voltage transformer and current transformer is unnecessary.

Model name Input Output Auxiliary power supply Number of units T-101HAA (D) 110V -5-0-5A -5-0-5V 110VAC 10

Specify three values for the output.

Leakage Current Transducers [Insulated]

T-51/T-101 Series

Leakage current transducers detect leakage current in AC cables using a Zero-current transformer (ZCT) and output DC current or DC voltage proportional to the leaking current value.

Applications

- Preventive and predictive maintenance management of insulation degradation in electrical equipment
- Detection of leakage current in AC cables

Delivery period classification

*2 When a harmonic component is contained in the measured circuit, the T-51LG measures the effective value of the leakage current including

The ZCT is a dedicated accessory, and thus cannot be used in

If the power supply frequency (fi) and output frequency (fo) are connected close to each other in the inverter circuit, a beat may occur

An error of approximately 0.4% may occur if an external magnetic field

The measurement circuit (input side) and output circuit can be insulated

mA V 20 5

4

0 0

0

0

7.5

15

DC input -

15mA

30mA

1

DC output DC Output

100mA

200mA

combinations other than those specified for the transducer.

in the leakage current and the output may fluctuate.

Insulation between the input circuit and output circuit. The input terminals and output terminals of the main unit are

Input/Output relationships

50

100

DC input -

of 200A/m is applied to the main unit and ZCT.

the harmonic component.

Influence of external magnetic field

,					
◎Standard	OQuasi-standard	∆Special			
product	product	product			
Immediate delivery	Within 20 days	21 to 60 days			
	product	Standard Quasi-standard product product Immediate delivery Within 20 days			

Outer shape	Model name	Accuracy	ZCT Ir	nput (AC)	Output (DC	;)	Auxiliary	Weight	Accessory (ZCT)	Delivery period
Outer	Model name	(grade)	Current	Frequency	Voltage or current and load	Ripple/Response speed	power supply			classification
Box	T-51LG	1.0	15mA 30mA 100mA 200mA 500mA 1A 5A	40Hz~2kHz	1mA : 0~5kΩ 5mA : 0~1kΩ 4~20mA : 0~600Ω 100mV : 5kΩ~∞ 1V : 5kΩ~∞ 5V : 5kΩ~∞ 10V : 10kΩ~∞ 1~5V : 5kΩ~∞	1% P-P or less 1s or less	110VAC ⁺¹⁰ / ₁₅ % 50 and 60Hz Consumption VA: 3	0.4kg (main unit only)	ZT15B ZT30B ZT40B ZT60B ZT80B ZT100B (Specify)	0

*3

*4

*5

*6

not insulated.

using an accessory ZCT.

mA \ 1 5

0.5 2.5

0 0

0

0

DC output

Manufacturable range

		T-51LG
Input		15mA~5A
Output		0.1~20mA, 50mV~10V
Auxiliary power supply	AC	100, 105, 110, 115, 120V ₊₁₀ ₂₀₀ , 210, 220, 230, 240V ⁺¹⁰ %
	DC	24V±10%

*1 Lead wire specifications (between ZCT and transducer) Make sure to use shielded wires.

Connect the shield (drain line) to the "±" input terminal.

Shielded wire specifications	Allowable lead length
Two-core shielded wire of 0.5~2.0mm ² (CVVS, etc.)	25m or less one way

Usage example

Connection diagrams (Refer to p.156 for outer dimensions.)

(Refer to p.146 for outer dimensions of the ZCT.)

Reference : Rated input current value selection method

1 Monitoring leakage current due to insulation degradation of loaded equipment

Install the ZCT in the immediate vicinity of the loaded equipment.

The sensitivity current of an earth leakage circuit breaker is determined as indicated below. Select an input current value that is 1 to 1.5 times the value indicated below.

Example: Selecting a sensitivity current according to the electrical shock protection of an earth-leakage circuit breaker.

2 Monitoring leakage current in a long cable wiring

Even if the insulation resistance (meg) is normal, floating capacitance is present between the electric line and earth, and some leakage current flows constantly. This must be taken into account when selecting the input current value. An example of a 3-phase, 3-wire 200V circuit is shown in Table 1.

The rated current value is the sum of the value determined in Table 1 and the value determined in Reference 1 above.

Table 1 Leakage currents when 1km of 600V vinyl cable (IV) for m riangle connection 3m o 3w 200V cable wiring is installed.

Distance from earth portion	(A) 4m or more	B 10cm or more	© 1.5mm or more	D Close contact
Cable size	 1st floor roof wiring of a wooden building Wiring for 2nd floor or higher of a wooden building Aerial wiring (excluding © or)) 	 Wiring inside a reinforced concrete line Vinyl pipe wiring or exposed wiring inside a steel beam (excluding © or ⁽D)) 	 Vinyl pipe-embedded work Vinyl pipe work in close contact with steel beam inside a steel building 	Metal pipe wiring workMetal duct work
8 mm ² or less	0.60mA/km	1.29mA/km	19.9mA/km	100mA/km
14	0.66	1.44	22.1	110
22	0.72	1.55	23.9	120
38	0.81	1.75	26.9	135
50	0.91	1.97	30.3	152
80	1.02	2.21	34.0	170
100	1.14	2.46	37.9	189
150	1.25	2.72	41.8	209
250	1.46	3.16	48.6	243
325	1.52	3.29	50.7	253
500	1.71	3.69	56.8	284

Table 2 Leakage current conversion table				
Type of cable wiring	Factor			
1-phase 100V cable run	0.3			
1-phase 3-wire 200V cable run	0.3			
3-phase 415 cable run (Y connection)	0.7			
, ,				

*1 With respect to the values shown above, the value for rubber-insulated cable (RB) is approximately 70% and that for a three-core 600V crosslinked polyethylene insulated cable (CV) is approximately 50%.

*2 With respect to the values shown above, the value in the case of 50HZ is 84%.

*3 For the leakage current of other cables, multiply the value in Table 1 by a factor of 2.

*4 For the length of the cable run, add all parts beyond the point of installation of the ZCT.

Ordering method

Model name	1	Input	Output	Combined ZCT		Auxiliary power supply	Number of units
woder name		Current	Voltage or current	Combined 201	1	Auxiliary power suppry	Number of units
T-51LG		15mA	4-20mA	ZT15B		110VAC	10
-	-	^					

 Specify the primary side current of the ZCT.

Leakage Current Transducers

T-51/T-101 Series

These transducers detect the leakage current in AC cables using a ZCT, attenuate the harmonic component contained in the current using a built-in low-pass filter, and output DC current or DC voltage proportional to the fundamental leakage current value.

Applications

 Measurement of the fundamental leakage current in inverters, thyristor control circuits, or other AC circuits that contain a harmonic component.

Delivery period classification

Symbol	©Standard	○Quasi-standard	∆Special	
Symbol	product	product	product	
Reference delivery period	Immediate delivery	Within 20 days	21 to 60 days	

shape		Accuracy	ZCT In	put (AC)	Output (DC	;)	Auxiliary power		Accessory	Delivery period
Outer s	Model name	(grade)	Current	Frequency	Voltage or current and load Ripple/Response speed		supply	Weight	(ZCT)	classification
Box	T-51LGF	1.0	15mA 30mA 100mA 200mA 500mA 1A 5A	50 and 60Hz	1mA : 0~5kΩ 5mA : 0~1kΩ 4~20mA : 0~600Ω 100mV : 5kΩ~∞ 1V : 5kΩ~∞ 5V : 5kΩ~∞ 10V : 10kΩ~∞ 1~5V : 5kΩ~∞	1% P-P or less 1s or less	110VAC ⁺¹⁰ / ₁₅ % 50 and 60Hz Consumption VA: 5	0.4kg (main unit only)	ZT 15B ZT 30B ZT 40B ZT 60B ZT 80B ZT 100B (Specify)	0

Manufacturable range

		T-51LGF		
Input		15mA~5A		
Output		0.1~20mA, 50mV~10V		
Auxiliary wer supply	AC	100, 105, 110, 115, 120V ₊₁₀ 200, 210, 220, 230, 240V ⁻¹⁵ %		
xilia er su		200, 210, 220, 230, 240V ^{-15/0}		
Au powe	DC	24V±10%		

*1 Lead wire specifications (between ZCT and transducer) Make sure to use shielded wires.

Connect the shield (drain line) to the " \pm " input terminal.

Shielded wire specifications	Allowable lead length
Two-core shielded wire of 0.5~2.0mm ² (CVVS, etc.)	25m or less one way

- *2 The ZCT is a dedicated accessory and thus cannot be used in combinations other than those specified for the transducers.
- *3 When the power supply frequency (fi) and the output frequency (fo) are close to each other in the inverter circuit, beating may occur in the leakage current and the output may fluctuate.
- *4 Influence of external magnetic field An error of approximately 0.4% may occur due to application of an
- external magnetic field of 200A/m to the main unit and ZCT. *5 Isolation between the input circuit and output circuit The input and output terminals of the main unit are not insulated.

The measurement circuit (input side) and output circuit can be isolated by using the accessory ZCT.

- *6 The grade indicates the accuracy when only a fundamental wave is input.
 - The influences of harmonic components are basically as follows.
 - •Third harmonic content 30% ------- approx. +2.0%

Harmonic attenuation waveform of low-pass filter

Application example

Connection diagrams (Refer to p.156 for outer dimensions.)

Outer dimensions of the ZCT unit

Ordering method

Voltage (Rise/Drop) Detectors [Insulated]

T-51/T-101 Series

<1-phase/3-phase>

These detectors instantaneously detect a voltage drop (or rise) compared to a previously set value, an open phase or a reverse phase (only for 3-phase) in 1-phase or 3-phase AC circuits and output a contact signal.

A "CAL signal" proportional to a preset value is output to enable accurate setting and checking of the value set.

Applications

- •Detecting flicker and instantaneous power interruption
- Monitoring computer power supply

Detecting open phases, reverse phases (only 3-phase AC circuits)

T-101VDL

Delivery period classification					
Symbol	©Standard	OQuasi-standard	∆Special		
Symbol	product	product	product		
Reference delivery period	Immediate delivery	Within 20 days	21 to 60 days		

Model nome	Eurotion	Circuit	Potod voltago	Setting ran	ge and accur	acy	Detection		Auviliant power aupply	Woight	Delivery period	
wouer name	FUNCTION	Circuit	naleu vollage	Variable setting range	CAL output	Accuracy	Method and detection time	Output	Auxiliary power supply	weight	classification	
T-101VDL	Drop		110VAC	●110V circuit 30~130V	DC 0.3~1.3V		●Method	●Form		0.6kg	0	
	detection	1-phase	220VAC	●220V circuit 60~260V	DC 0.6~2.6V	+5%	Voltage crest value detection method	 relay contact Contact capacity 250VAC 3A 	•Contact capacity 110VAC ⁺¹⁰ / _{−15} 9	110VAC ⁺¹⁰ %		
	Rise		Consumption VA (between lines)	●110V circuit 90~180V	DC 0.9~1.8V	10/0	 Method Detection time 		30VDC 3A Consumption VA: 3	0 6kg	0	
I-TOTVDH	detection	110V: 0.2 1 cycle 220V: 0.4 ●220V circuit DC 180~360V 1.8~3.6V	1 cycle	●Alarm indication lamp Red LED		0.6кд	0					
	T-101VDL	T-101VDL Drop detection	T-101VDL Drop detection T-101VDL Rise T-101VDH Rise	T-101VDL Drop detection 110VAC or 1-phase or 3-phase 110VAC or 220VAC T-101VDH Rise detection 0	T-101VDL Drop detection 1-phase or 3-phase 110VAC or 220VAC 0110V circuit 30~130V T-101VDH Rise detection 0 3-phase Consumption VA (between lines) 110V c.2 220V c.4 0	T-101VDL Drop detection 1-phase or 110VAC or 220VAC 0110V circuit 30~130V DC 0.3~1.3V T-101VDH Rise detection 1-phase or Consumption VA (between lines) 110V c.2 220VX 0.10V circuit 30~130V DC 0.3~1.3V T-101VDH Rise detection 3-phase Consumption VA (between lines) 110V c.2 220V c.4 0.10V circuit 0.6~260V DC 0.6~2.6V	T-101VDH Rise detection Rise detection Parted voltage Variable setting range CAL output Accuracy T-101VDH Drop detection 1-phase or 3-phase 110VAC or 220VAC 0.3~1.3V 0.3~1.3V 0.3~1.3V T-101VDH Rise detection 0r 2.0r 0.0r 0.6~2.6V 0.6~2.6V 220V circuit DC 0.0~10V 0.9~1.8V 0.9~1.8V 110V circuit DC 0.110V circuit DC 0.9~1.8V 0.9~1.8V 0.9~1.8V 0.9~1.8V 0.9~1.8V	Indeer Halle Punction Critical Halled Voltage Variable setting range CAL output Accuracy Method and detection time T-101VDL Drop detection 1-phase or action 110VAC or 220VAC 0.3~1.3V 0.3~1.3V 0.3~1.3V 0.3~1.3V 0.4~1.3V 0.4~1.4V 0.4~1.4V </td <td>Induction Name Function Critical Critical Critical Particular Particular Voltage Variable setting range CAL output Accuracy Method and detection time Output T-101VDL Drop detection 1-phase or 3-phase 110VAC or 220VAC 0.3~1.3V 0.3~1.3V 0.3~1.3V 0.3~1.3V 0.6~2.6V 0.6~2.6V</td> <td>Model Harrie Purchon Cricuit National power suppry T-101VDL Drop detection Drop detection 110VAC or 220VAC 110VC 0 and 60Hz •110V circuit 0.3~1.3V DC 0.3~1.3V •Method and detection time 0.3~1.3V •Method 0.3~1.3V •Method 0.3~1.3V •Method 0.3~1.3V •Method 0.3~1.3V •Method 0.6~2.6V •Method 0.6~2.6V •Method 0.6~2.6V •Method 0.6~2.6V •Form 0.6~2.6V •Form 0.6~2.6V •I10V circuit 0.6~2.6V •Method 0.6~2.6V •Efsk 0.8~20V circuit 0.9~1.8V •Method 0.9~1.8V •Alarm indication lamp Red LED •Alarm indication lamp Red LED •Alarm indication lamp Red LED •Alarm indication lamp Red LED •Alarm indication lamp Red LED •Alarm indication lamp Red LED •Alarm indication lamp Red LED •Alarm indication lamp Red LED •Alarm indication lamp Red LED •Alarm indication lamp Red LED •Alarm indication lamp Red LED •Alarm indication lamp Red LED •Alarm indicatio</td> <td>Model Harrie Function Critical Harded Voltage Variable setting range CAL output Accuracy Method and detection time Output Audinary power suppry Weight T-101VDL Drop detection Drop detection 110VAC or 220VAC</td>	Induction Name Function Critical Critical Critical Particular Particular Voltage Variable setting range CAL output Accuracy Method and detection time Output T-101VDL Drop detection 1-phase or 3-phase 110VAC or 220VAC 0.3~1.3V 0.3~1.3V 0.3~1.3V 0.3~1.3V 0.6~2.6V 0.6~2.6V	Model Harrie Purchon Cricuit National power suppry T-101VDL Drop detection Drop detection 110VAC or 220VAC 110VC 0 and 60Hz •110V circuit 0.3~1.3V DC 0.3~1.3V •Method and detection time 0.3~1.3V •Method 0.3~1.3V •Method 0.3~1.3V •Method 0.3~1.3V •Method 0.3~1.3V •Method 0.6~2.6V •Method 0.6~2.6V •Method 0.6~2.6V •Method 0.6~2.6V •Form 0.6~2.6V •Form 0.6~2.6V •I10V circuit 0.6~2.6V •Method 0.6~2.6V •Efsk 0.8~20V circuit 0.9~1.8V •Method 0.9~1.8V •Alarm indication lamp Red LED •Alarm indication lamp Red LED •Alarm indication lamp Red LED •Alarm indication lamp Red LED •Alarm indication lamp Red LED •Alarm indication lamp Red LED •Alarm indication lamp Red LED •Alarm indication lamp Red LED •Alarm indication lamp Red LED •Alarm indication lamp Red LED •Alarm indication lamp Red LED •Alarm indication lamp Red LED •Alarm indicatio	Model Harrie Function Critical Harded Voltage Variable setting range CAL output Accuracy Method and detection time Output Audinary power suppry Weight T-101VDL Drop detection Drop detection 110VAC or 220VAC	

*1 Manufacturable range

- Auxiliary power…100/110/120/200/220/240VAC (voltage tolerance ¹⁰/₁₅%) supply 24VDC (voltage tolerance±10%), 100~120VDC (voltage tolerance ^{*15}/₂₀%)
- *2 The detection accuracy is the percentage compared to the rated voltage.
- *3 Output indicator lamp…A red lamp lights when the output contact is operating.
 *4 Output time
 - •When the drop (or rise) time is 1s or less ………… 1±0.5s
 - •When the drop (or rise) time exceeds 1sdrop (or rise) time
 - •For open or reverse phaseduration of open or reverse phase
- *5 A contact signal is output when the voltage of one phase drops significantly (to approx. 50% or less of the rated voltage) in a three-phase AC circuit.
- *6 Due to the voltage crest value detection method, error may occur when the input waveform is distorted. Should this happen, calibrate the setting value in accordance with the actual equipment.

*7 A model that operates when abnormal operation lasts for three cycles can also be manufactured. (Detection time: 40~70ms)

- *8 Continuous application of up to 180V is possible for the 110V rating, and up to 360V is possible for the 220V rating.
- *9 Dielectric strength
 - •Between input terminal and contact output terminal: 2000VAC for 1 min.
 - •Between contact output terminal and CAL output terminal: 2000VAC for 1min.
- *10 CAL output load resistance: $5k\Omega \sim \infty$.
- *11 Drop detection cannot be performed if the auxiliary voltage drops at the same time. The auxiliary power supply should thus be taken from a circuit where voltage drop does not occur.

Detection voltage setting (Please carefully read the accompanying instruction manual)

Auxiliary powe

supply

T-101VDL (3-phase)

T-101VDH (3-phase)

I oad

Note 1. For low-voltage circuits, grounding of the secondary side of the instrument voltage transformer is unnecessary.

3

2

Fig. 2

Internal contact circuit

Auxiliary powe

supply

T-101VDL (1-phase)

T-101VDH (1-phase)

VТ

Fig. 1

Note 1

Load

Transducers

T-51/T-101 Series

Filters

A ripple (AC component) of approximately 5% P-P is contained in the output of K Series models. Use this filter if the ripple is to be reduced to 1% P-P or less.

Delivery period classification						
Symbol	©Standard	○Quasi-standard	∆Special			
Symbol	product	product	product			
Reference delivery period	Immediate delivery	Within 20 days	21 to 60 days			

Model name		Input and output	Internal resistance	Output ripple	Weight	Delivery period classification
T-51FA	Voltage	±20V max.	- approx. 160Ω	1% P-P or less	0 Eka	0
I-DIFA	Current	±30mA max.			0.5kg	

*1 The H Series and S Series transducers do not require the use of T-51FA because the output ripple is 1% P-P or less.

*2 T-51FA is not necessary when a transducer and an indicator (Mitsubishi Electric L or Y models) are used in combination.

Warning

The internal resistance of T-51FA is approximately 160Ω . Please note that problems such as the examples listed below may occur.

Connection diagrams (Refer to p.156 for outer dimensions.)

Auxiliary Parts

1. T-51/T-101 Series mounting parts

•Breaker mounting plate for distribution panel

•Breaker coupling/mounting tabs for distribution panel

* Please specify "BH-K coupling tabs" when purchasing.
 80 sheets/box (8 tabs/sheet)

2. GR-2 standard resistor

Used to inspect resistance-bulb temperature transducers (T-51TP, T-101TPZ). Incorporates a resistance value corresponding to the rated input temperature.

Method for mounting inside panels

Mounting work is to be performed by a person with the proper technological expertise. •The following four types of mounting can be performed for models with standard

specifications. The mounting parts can be used according to application.

Accessories

Mounting legs are packaged together with the main unit as accessories.

(1) Using mounting legs

(2) Using an IEC 35mm rail

* When mounting using an IEC 35mm rail, affix the unit using a stopper to prevent sliding to the side.

(3) Using a breaker mounting plate for distribution panel

(4) Using a breaker coupling/mounting tabs for distribution panel

Snap-fit terminal cover

- The terminal cover is fitted onto the partition walls of the terminal section and can be easily removed.
 The cover can also be removed by placing the tip of a standard screwdriver into a slot along the side edge of the terminal cover.
- To attach the terminal cover, simply push the cover back into place.
- A nameplate can be inserted in the slot along the side edge of the terminal cover to indicate a signal name or equipment number.

The customer is requested to provide the nameplate.

Outer shape	Nameplate dimensions
T-51	t0.8~1×7.5×45
T-101	t0.8~1×7.5×95

For safety reasons, use an insulating material as the material of the nameplate.

Power supply indicator (lamp)

An indicator (red LED) that shows current is being in supplied from an auxiliary power supply is provided (except for K Series).

Use this for daily inspection and as a guideline for judging whether or not the device is operating.

Handling

T-51/T-101 Series

Wiring

Connection work is to be performed by a person with the proper technological expertise.

- Connections must be made correctly and securely.
 Be careful because erroneous wiring not only causes malfunctions and damages equipment, but may also spread problems to other power equipment.
- •As the lead wires for connecting the output and load of a transducer, use two-core shielded wires or twistedpair wires to prevent malfunction and failure due to transmission noise and disturbance surge. If the transmission distance exceeds 100m, current output specifications; for example, 4~20mA DC are recommended.
- •Do not bring the output line close to or bundle it together with other power lines and the input lines (i.e., VT, CT and auxiliary power supply).
- Although the H Series, S Series, instrumentation and peripheral transducers are provided with auxiliary power supply terminals, if the voltage of the measured circuit is comparatively stable and within the allowable range of the auxiliary power supply, the voltage can be supplied from the measured circuit (VT secondary side). However, if the voltage of a generator is supplied from the measured circuit, the transducer output may fluctuate when the voltage during operation such as starting or stopping of the generator falls below the rated value.
- •Ground the shield line of a shielded cable on the receiving side.

However, depending on the circumstances of external noise, it may be better to ground it on the transducer side.

Connecting the input line

For temperature transducers, isolators, DC level transducers or other transducers that handle minute input signals, arrangements must be made to prevent interference such as noise and surge in the input line. For input lines such as these, in order to prevent incorrect operation and failure due to transmission or noise interference, please use shielded or twisted cables. Additionally, avoid installation alongside power lines or other noise sources as well as pairing different input lines with each other and other lines as shown below.

Signal line connection distance

The connection distance depends on conditions such as the output signal line specifications of the transducer, signal line installation method, external magnetic field and electric field, and cannot be determined unconditionally. However, empirically speaking, the lengths shown below should be used as a reference.

Applicable crimp terminals and tightening torques

Series	Applicable crimp terminals	Tightening torque
T-51, T-101	Round crimp terminals (outer diameter: ϕ 8.5 or less) for M4 screws	0.98~1.47N•m

T-51/T-101 Series

Short-circuiting and opening of output terminals

Handling

- •Terminals for current output Although the terminals may be opened/short-circuited, a voltage of 8~50V is generated when they are opened.
- •Terminals for voltage output Although the terminals may be opened, do not short-circuit them.

Checking output

Release the load and measure with a voltmeter or ammeter using an input resistance within the specified load range (except the K Series).

K Series transducer

Measure with a voltmeter or ammeter using the same input resistance as the specified load resistance.

If such an indicator is not available, check using the following method.

Output adjustment

- Although the transducer output is adjusted according to the predetermined specifications, use the span adjuster or zero adjuster on the transducer surface to perform readjustment for matching.
 Ordinarily, do not touch these except in special cases.
- With the T-51 and T-101 series, output adjustment is performed upon removing the cap. For dust prevention, put the cap back on after adjustment.
- Adjustment method
 - ① With the span adjuster and zero adjuster, the output increases when turned clockwise and decreases when turned counterclockwise.
 - ②With the zero adjuster, the output range is increased or decreased by a fixed value (approximately ±0.3~±5% with respect to the span) as shown in the figure on the right.
 - ③ With the span adjuster, the output increases or decreases at the same proportion (±3%~±15% with respect to the rated output) with zero input as the base point.

• Standard adjustment procedure

Apply the auxiliary power supply and perform zero adjustment so that the predefined output is output in a state where an input is not applied. Then, apply the rated input and perform span adjustment so that the rated output is output. However, zero adjustment of a frequency transducer is performed with the lower-limit frequency being input, and span adjustment is performed with the upper-limit frequency being input.

Do not apply an excessive force to the adjusters.

●Fig. 1 T-51 Series

•Fig. 2 T-101 Series

With multi-transducers, the required AC electric quantities can be measured by inputting the secondary sides of a VT and CT.

Measurement elements

- Analog outputs
 - AC voltage, AC current, active power, reactive power Power factor, Frequency
 - Harmonic voltage, harmonic current
- Pulse outputs
- Active electric energy, reactive electric energy
- Block diagram

Features

- •Various elements can be measured with one unit.
- •A liquid-crystal display and buttons enable setting flexibility.
- •Supports power flow measurement (sending, receiving) and can be used for monitoring power generating equipment. (Active power, reactive power, power factor, active electric energy, reactive electric energy)
- •Compact size realizes reducted mounting space.

Analog output patterns

			Measurement element										
Phase-wire system	Analog output pattern		Analog output										output
oyotom -		CH1	CH2	CH3	CH4	CH5	CH6	CH7	CH8	CH9	CH10	CH11	CH12
3-phase	P01	V12	V23	V 31	l1	l 2	lз	W	PF	var	Hz		
3-wire system 1-phase	P02	V12	HV12	V 31	I 1	l 2	HI1	W	PF	var	Hz	Wh, Varh (set using switch)	
3-wire system	P03	V12	V23	V 31	l1	l 2	lз	W	PF	HV12	HI1		
1-phase 2-wire system	P01	V 12	HV12	_	l1	_	HI1	W	PF	var	Hz		

The output pattern is fixed at P01 for 1-phase, 2-wire systems.

HI: Harmonic current, HV: Harmonic voltage, -: No measurement element (fixed at lower limit output)

Specifications

		Ite	em			Specification						
M	ode	l name		T-120M								
In	dica	ator rating]	110V/220	0V 5A 50/60Hz							
Pł	nas	e-wire sy	stem	Can be u	sed in common with 1-phase	e, 2-wire, 1-phase, 3-wire and 3-	phase, 3-wire systems					
Nu	umb	per of out	put points	Analog o	Analog output: 10, pulse output: 2							
				-	1-phase, 2-wire,	Secondary voltage 110V: 0~150	0V×VT ratio					
		AC volta	ge	Grade 0.5		Secondary voltage 220V: 0~300						
					phase, 3-wire	0~150V/0~300V (set using swite	ch) V ₃₁ is fixed at 300V					
	1111)	AC curre	ent	Grade 0.5	0~5A×CT ratio							
					0~+PkW or -P~0~+PkW (set	Phase-wire system Secondary voltage Rate	d voltage					
S	S	Active po	owor	Grade 0.5	Positive side: Can be set in the ra	inge of approx. 40~120% of the rated power.		ratio×CT ratio				
eut	읙	Active p	JWEI	Giade 0.5	Negative side: Can be set in the ra	nge of approx20~-100% of the rated power.		V×CT ratio				
Ĕ	E				(power flow measureme	nt is enabled)	1-phase 3-wire 1000V	V×CT ratio				
ele	3				Q (lead) ~0~Q (lag) kvar (C	Q: rated reactive power)		T ratio×CT ratio				
t	ie:	Reactive	power	Grade 0.5	Can be set in the range of appro	ox. 40~120% of the rated reactive power.		V×CT ratio				
۱ <u>۳</u>	립				(power flow measureme	nt is enabled)	The unit for reactive power is var.					
Measurement elements	(complies with JIS	Power fa	ictor	Grade 1.5	5	0~1~Lag 0 (set using switch)						
ası	0				(power flow measureme	,						
٨e	Analog (Frequen	су	Grade 1.0	45~55Hz/55~65Hz (set usi							
~	<u> </u>	Harmonic	Overall (2nd to 15th-	Grade 2.0	0~30VXVT ratio (when 110V is selected as a	secondary voltage)/0~60V (when 220V is selected as	secondary voltage) (Fixed at 0~30V in the case	of 1-phase 3-wire.)				
	~	voltage	order) content (%)			effective value and content (%)						
		Harmonic	Overall (2nd to 15th-	Grade 2.0		ratio/0~5A×CT ratio (set using s						
	-	current	order) content (%)		0~100% (switching betwee	en effective value and content (%) is enabled)					
	Pulse		ectric energy			class) (switching between sendin		enabled)				
			electric energy			between sending and receiving						
		tive load)	specifications			et using switch) (5k Ω ~ ∞), specif	y when ordering					
· ·		/		* With limiter function and zero and span adjustment functions 1% P-P or less								
RI	ppl	e	Effective value	1% F F of less 1s (demand time interval can be switched for current and power)								
Re	esp	onse	Harmonics	7s (demand time interval can be switched)								
sp	ee	b	Demand time interval setting	0~60s (in 10s intervals), 1~10min (in 1min intervals), 10~30min (in 5min intervals) (0s setting is instantaneous output.)								
			Demand time milervar setting	O-60s (in 10s intervals), 1~10min (in 1min intervals), 10~30min (in 5min intervals) (0s setting is instantaneous output.) Output form: semiconductor relay, no-voltage contact								
				Contact capacity: Leak current for 110VAC or less, 0.1A or less: 15µA for 110VAC								
Pi	ilse	output s	pecifications	Leak current for 100VDC or less, 0.1A or less: 1μ A for 100VDC (on resistance is 12Ω or less)								
		ouipuro	poolinoutionio	Pulse wid	Pulse width: 0.125s/0.5s/1s±20% (set using switch)							
						ling to full-load active power (set usi	ng switch; see "Setting method"	for details)				
	امم	0.4				er is supplied (RUN, analog output		ŀ				
וט	spla	ау		Various s	ettings are possible (set as	primary side values)						
Αι	ıxili	ary powe	r supply	Can use	any of 100-240VAC +10 %, 5	50-60Hz, 100VDC <u>+40</u> %						
_			Voltage circuit			en approx. 220V (all phases)						
		umption	Current circuit		0.1VA (all phases)	······································						
VA	۹	-	Auxiliary power supply	Approx. 0.1VA (all phases) Approx. 10VA (110VAC), approx. 12VA (220VAC), approx. 6W (100VDC)								
0	uter	dimensi	ons (mm)	W120XH	100×D101		,					
		inal screv		Input terminals: M4, output terminals: M3.5								
W	eig	ht		0.6kg	· •							
					output terminals as a whole and outer casing.	between auxiliary power terminals as a whole and o	uter casing	2000VAC				
		nercial fre				It terminals as a whole, between auxiliary power term						
wi	ths	tand volta	ige			a whole, between auxiliary power terminals as a who		1min				
In	sula	ation resis	stance		more at the same locations			1				
	_					as the above (Soov DO)						

Remarks (1) Regarding the harmonic output, measurement of harmonics cannot be performed unless the fundamental wave content is 75% or more of the rated voltage. (2) An analog output of approximately 100% or more may be output for a few seconds immediately after turning on the auxiliary power supply (until the internal voltage stabilizes).

Mounting method

Four types of mounting are available.

The mounting methods are the same as those of the T-51 and T-101 series. Refer to the "Mounting method for T-51 and T-101 series" on p.151.

Names and number of accessories

Mounting legs4pcs.

Instruction manual1 copy

Operation method

(2) Method for checking settings (button functions)

Primary \longleftrightarrow Primary \longleftrightarrow Active power \longleftrightarrow Active power measurement \longleftrightarrow Power factor \longleftrightarrow Reactive power

voltage current measurement range range (negative side) measurement range

 \rightarrow Operation screen \leftrightarrow Pulse output CH12 \leftrightarrow Pulse output CH11 \leftrightarrow Harmonic current \leftrightarrow Harmonic voltage \leftrightarrow Frequency \leftarrow

The active power measurement range (negative side) is displayed when the special bidirectional setting is set for active power.
The harmonic voltage and harmonic current are not displayed when the analog output pattern is P01.

• The reactive power measurement range and frequency are not displayed when the analog output pattern is P03. 158

Setting method

4 Pulse output settings (pulse output elements, pulse unit, pulse width)

Transducers

6 Harmonics measurement settings (harmonic voltage, harmonic current)

Remarks: Refer to "Operation method" on p.158 regarding the method for checking settings.

Input/Output relationships

Outer Dimensions/Connection Diagrams

Outer dimensions, and names and functions of respective parts

Connection diagrams

Ordering method

Model name	Output Voltage or current	Number of units
T-120M	0-5V	3

Transducers

Special Application Transducers

T-120HA harmonics transducers [Insulated]

Applications

Harmonics transducers perform constant monitoring of the harmonic voltage and harmonic current of a power system, and help to prevent disorder due to harmonics in advance.

Features

- •Various harmonics measurement elements (10 elements) can be measured with one unit.
- •The harmonic voltage and current can be measured with one unit.
- •The harmonic voltage (current) effective value and content (%) can be measured (*).
- •The instantaneous value and average value can be measured. (Switching)
- *: Output selected by setting

Usage example

Analog output patterns

Analog output nottorno	Measurement element											
Analog output patterns	CH1	CH2	СНЗ	CH4	CH5	CH6	CH7	CH8	CH9	CH10		
P01	V (1)	V(3)	V(5)	V(7)	V(11)	V(13)	ΣVн	ΣΙΗ	Vrms	Irms		
P02	I(1)	I(3)	I(5)	I(7)	I(11)	l(13)	ΣVн	ΣΙΗ	Vrms	Irms		
P03	V(3)	V(5)	V(7)	I(3)	I(5)	I(7)	ΣVн	ΣΙΗ	Vrms	Irms		

(1) (3) (5) (7) (11) (13): order of harmonic wave, Σ : overall harmonic wave, rms: overall effective value

Specifications

	lt	tem			Specification				
Mod	lel name		T-120HA						
Indi	cator rating		110V/220V	5A 50/60H	Z				
Pha	se-wire syster	n	1-phase, 2-	wire system					
Nur	nber of output	points	Analog out	put: 10 points					
	AC voltage	Effective value	Grade 0.5	110/220V	Secondary voltage 110V: 0~150V×VT ratio				
11 s	AC voltage	Fundamental wave component	Grade 2.0	110/2201	Secondary voltage 220V: 0~300V				
11.	AC current	Effective value	Grade 0.5	5A	0~5AXCT ratio				
ξo	Ao cuircin	Fundamental wave component	Grade 2.0						
lo e		Orders measured	3rd, 5th, 7t	<u>h, 11th, 13th,</u>	and overall (2nd to 15th-order) harmonics				
h t	Harmonic	n-th order (overall)			Secondary voltage 110V: 0~30V×VT				
vit	voltage	effective value	Grade 2.0	110/220V	Secondary voltage 220V: 0~60V				
are es		Content (%)			0~20% (switching between effective value and content (%) is a	enabled)			
plie		Orders measured	3rd, 5th, 7t	<u>h, 11th, 13th,</u>	and overall (2nd to 15th-order) harmonics				
Measurement elements (complies with JIS C 1111)	Harmonic current	n-th order (overall) effective value	Grade 2.0	5A	0~1AXCT ratio/0~3AXCT ratio/0~5AXCT ratio				
		Content (%)			0~100% (switching between effective value and content (%) is	enabled)			
Ana	log output spe		4~20mA (0	$I\sim$ 20mA (0~600Ω) or 0~5V/1~5V (set using switch) (5kΩ~∞), specify when ordering					
	istive load)		*With limiter function and zero and span adjustment functions						
Rip	ble		1% P-P or less						
		Overall effective value	1s						
Res	ponse	Fundamental wave component	7s						
spe	ed	n-th order/content (%)	7s (demand time interval can be set)						
		Demand time intervals	0~60s (in 10s intervals), 1~10min (in 1min intervals), 10~30min (in 5min intervals)						
Disp	lav		Liquid-crystal display lights when electricity is supplied (RUN, analog output pattern display).						
	Лау		Various settings are possible (set as primary-side values).						
Aux	iliary power su	ipply	Can use ar	ny of 100-240	VAC ⁺¹⁰ ₋₁₅ %, 50-60Hz, 100VDC ⁺⁴⁰ ₋₂₅ %				
		Voltage circuit	0.1VA whe	n approx. 110	V, 0.2VA when approx. 220V (all phases)				
Con	sumption VA	Current circuit	Approx. 0.1	VA (all phase	es)				
		Auxiliary power supply	Approx. 10	VA (110VAC)	, approx. 12VA (220VAC), approx. 6W (100VDC)				
Out	er dimensions	(mm)	W120×H10	00×D101					
Terr	ninal screws		Input termi	nals: M4, outp	out terminals: M3.5				
Wei	ght		0.6 kg	-					
			Between in	put/output ter	rminals as a whole and outer casing				
			Between a	uxiliary power	r terminals as a whole and outer casing	2000VAC			
	nmercial freque	ency			erminals as a whole and current input terminals as a whole	(50/60Hz)			
	stand voltage				r terminals as a whole and input terminal as a whole	(50/60H2) 1min			
					as a whole and output terminals as a whole				
			Between a	uxiliary power	r terminals as a whole and output terminal as a whole				
Insu	lation resistan	ce	$10M\Omega$ or m	ore at the sa	me locations as above (500VDC)				

Remarks (1) Regarding harmonic output, the measurement of harmonics cannot be performed unless the fundamental wave content is 75% or more of the rated voltage.
 (2) An analog output of approximately 100% or more may be output for a few seconds immediately after turning on the auxiliary power supply (until the internal voltage stabilizes).

Mounting method

Four types of mounting are available.

The mounting methods are the same as those of the T-51 and T-101 series. Refer to the "Mounting method for T-51 and T-101 series" on p.151.

Names and numbers of accessories

L

Mounting legs4pcs.

Instruction manual1 copy

Operation method

(1) Screen during operation

(2) Method for checking settings (button functions)

T-120HA harmonics transducers [Insulated]

Setting Method

RETURN SET : The set up mode is entered when this is pressed for 2s or more. Used for selecting an item to be set, and setting various items. ⊕ or —: Used for increasing/decreasing a setting value during set up, and for checking setting values. RETURN :Used for selecting (setting back) an item to be set. The underline in the setting specifications indicates the default value at the time of factory shipment.

3 Analog output settings (Analog output 1-5V/0-5V, output limit)

[Button functions]

SET

4 Analog output adjustment (zero adjust, span adjust)

Special Application Transducers

T-120HA harmonics transducers [Insulated]

Setting method

5 Harmonics measurement settings (harmonic voltage, harmonic current)

6 Demand time interval setting (harmonic demand time interval)

Remarks: Refer to "Operation method" on p.166 regarding the method for checking settings.

Outer dimensions, and names and functions of respective parts

Connection diagrams

• Ground the shield line of a shielded cable on the receiving side

However, depending on the circumstances of external noise, it may be better to ground it on the transducer side. •NC is a connection-forbidden terminal.

Ordering method

Model name		Output	Number of units	
Wouer name	Volt	tage or current	Number of units	
T-120HA		4~20mA	5	

Special Application Transducers

Active power/active energy transducers [Insulated]

Applications

Features

Compact and lightweight

Does not take up mounting space.

output for active electric energy.

· Weights only 0.5kg.

Needs for measuring power and electric energy in various power generating equipment and factory production lines, monitoring operating conditions of power generating equipment, ascertaining generated active electric energy, and performing energy-specific unit management of factory production lines are increasing in recent years.

Needs for detailed monitoring of electricity usage quantities according to respective divisions for carrying out factory energysaving measures and ascertaining the results of energy-saving measures are also increasing.

The Mitsubishi Electric T-51WWH transducer can be used for such applications.

• The outer dimensions are 50(W)×100(H)×118mm(D).

Dual output of active power and active electric energy

· Can measure the active power and active electric energy of a

circuit and deliver two outputs with one unit. A signal of 4~20mA DC is output for active power and a pulse signal is

• Less expensive, more compact and more space-saving than a watthour meter and active power transducer combination.

Usage examples

■Specifications

Item	Specif	ication				
Model name	T-51\	wwн				
Measurement element	Power	Electric energy				
Input range	0~1000W (for 110V 5A input)					
input range	0~2000W (for 220V 5A input)					
Phase-wire system	3-phase, 3-wire system or 1-phase, 3-wir	e system (Please specify when ordering)				
Ratings	110V 5A 50-60Hz or 220V 5A 50-6	0Hz (Please specify when ordering)				
Output	4~20mA DC (analog output) Load resistance: 0~525Ω	 Pulse unit: □kWh/P (primary side) Pulse output Output form : open collector Output current : loL 30mA max Withstand voltage between collector and emitter : VCE 35V max Pulse width : 100~150ms Leakage current : 100µA or less (VCE=35V) Measure only in positive direction 				
Accuracy	0.5	(Normal)				
Auxiliary power supply	Unnecessary (supplied from input	voltage between P1~P3, load: 5VA)				
Weight	0.5	0.5kg				
Consumption VA	Current circuit I1 0.1VA I3 0.1VA	Voltage circuit P1-P2 2.5VA P2-P3 2.5VA				

Manufacturable range

(1) Secondary side (available) power value

lagut	Secondary side power value (available power value)						
Input	Standard specifications	Manufacturable range					
110V 5A	0-1000W (standard specification)	VT, CT secondary-side power value: 500~1200W					
220V 5A	0-2000W (standard specification)	VT, CT secondary-side power value: 1000~2400W					

*VT, CT secondary side power value= (available power value) vcT ratio

(2) Pulse unit Specify from among three of pulse units according to the full-load active power

Full-load active power (kw)	1~less than 10kW	10~less than 100kW	100~less than 1000kW	1000~less than 10000kW	10000~less than 100000kW
Pulse unit (specify)	0.001kWh/P 0.01kWh/P 0.1kWh/P	0.01kWh/P 0.1kWh/P 1kWh/P	0.1kWh/P 1kWh/P 10kWh/P	1kWh/P 10kWh/P 100kWh/P	10kWh/P 100kWh/P 1000kWh/P

Example: 3-phase, 3-wire 200V 100/5A circuit

Full-load active power = $\frac{\sqrt{3} \times 200 \times 100}{1000}$ =34.6kW Based on the above table, specify from among 0.01kWh/P, 0.1kWh/P and 1kWh/P.

Accessories

Ordering method

Model name]	Phase-wire		VT ratio		CT ratio		Primary side power value		Output		Output pulse unit		Number of units
T-51WWH		3P3W		440/110V		750/5A		0~600kW		4~20mA DC		1kWh/P		3
	For △-Y connection, please specify as such.													

Connection diagram

Note 1. For low-voltage circuits, grounding of the secondary sides of the instrument voltage transformer and current transformer is unnecessary.

Usage

- Install transducers in panels and use them as interface equipment for inputting DC signals corresponding to items measured into various devices such as central monitor panels, data loggers and measuring equipment.
- •Transducers do not have any particular items requiring operation.

Care

During periodic maintenance that accompanies power interruption, use a soft cloth to wipe off the dust and debris that collects on the surface of the transducer.

In the case of severe soiling, dip a cloth in a neutral detergent diluted with water, wring well, and then wipe the transducer surface. Do not wipe using a chemically-treated dust cloth or cleanser such as benzene or thinner, otherwise discoloration or deformation of the surface may occur.

Storage

Store transducers according to the following procedures. Removal work is to be performed by a person with proper technological expertise in electric works.

1 Removing a transducer

- •Turn off the power to the circuits (input, auxiliary power) connected to the transducer. Confirm that no voltage is applied.
- •Use a screwdriver to loosen and remove the terminal screws of the transducer.
- •Perform the "Method for mounting" procedure on p.151 in reverse to remove the transducer.

2 Storage

For storage, refer to section 8 on p.109.

Request for maintenance and inspection

Perform maintenance and inspection as below to ensure continued use of transducers. (Inspection while power is interrupted must be performed either every six months or every year.)

1 Daily inspection

- •Are there any broken parts in the outer peripheral portion?
- Are there any abnormal noises or odors?
- •Have debris, dust or water drops accumulated?
- •For the T-51 and T-101 series, is the power-on indicator lamp lit?
- •For the T-120 series, is there any abnormality in the LCD screen?
- Is there any indication, record or alarm related to abnormal measurement data in central monitor, data logger or measurement equipment, that receives transducer output signals?

2 Periodic inspection

Inspect the following in addition to the above.

- Is there any abnormality in the output of the transducer? (Check during inspection of receiving/transforming equipment or plant.)
- •Are any of the terminal screws loose? (Before performing this check, ensure that equipment is in the power interrupted state.)

• Is there any overheating or deformation due to stress to various components such as the terminals or outer casing?

Refer to "Checking output" on p.155 concerning inspection procedures.

] Performance

		Class	sification			Power tra	ansducers			
		Class	SIICALION			Power tra				
		Produ	uct name	Current tra	ansducers	Voltage tra	ansducers	Active powe	r transducers	
	lodel ame		Box	T-51KAA T-51KSS T-51HAA T-51HSS	T-101SAA	T-51KAV T-51HAV	T-101SAV	T-101HW	T-101SW	
		G	rade	0.5	0.25	0.5	0.25	0.5	0.25	
	Toleran	nce	% with respect to basal value	±0.5% ±0.25%		±0.5%	±0.25%	±0.5%	±0.25%	
	Influence of temperature		% with respect to basal value upon change of $\pm 10^{\circ}$ from 23°C	±0.5% ±0.25%		±0.5%	±0.25%	±0.5%	±0.25%	
	Influend frequer		$\%$ with respect to basal value upon change of $\pm5\%$ from rated frequency	±0.25% (both)	±0.13%	±0.25% (both)	±0.13%	±0.25% (both)	±0.13%	
	Influence of voltage % with respect to basal value upon change of ±10% from rated voltage		_	_	_	_	±0.25%	±0.13%		
	Influence of current		% with respect to basal value upon change of 20% and 120% of the rating from rated frequency		_	_	_	_	_	
Performance	Influence of power factor (reactive factor) a LAG and LEAD of 0.5 each		_	_	_	_	±0.5%	±0.25%		
		Contin	uous overload	120% of rate	d input value	120% of rate	ed input value	120% of rated 120% of ra		
			1.5 times rated voltage	_	_	Supply electricity	v for 10s duration 10s intervals	Supply electricity		
	Instanta overloa		2 times rated current		for 10s duration	To times at	–	10 times at Supply electricity		
	(input)		10 times rated current	Supply electricit			_	Supply electricit	10s intervals ty for 3s duration	
			between electric circuit	5 times at 5	min intervals	2000\/AC	C for 1min	5 times at 5	min intervals	
	14/:+!	and	and outer casing between input circuit and		2000VAC for 1r		auxiliary power supp	lv are excluded)		
	Withsta voltage		auxiliary power supply between input circuit			-	C for 1min	,		
			and output circuit between output circuit and		2000VAC for 1r		auxiliary power supp	ly are excluded)		
	Insulati resista	ion	auxiliary power supply Test voltage: 500VDC		10M	Ω or more (at relative	e humidity of 80% or	less)		
	Noise		Auxiliary power supply			±1500V, puls	se width: 1µs			
	resistar	nce	Input		±1500V,	pulse width: 1 μ s (cur	rrent input circuits are	exempt)		
		Impa	ct resistance		490m/s ² (500	G), in 3 directions, 6 t	times with mounting I	egs mounted		
		Vibrati	on resistance	16.7Hz, double a	Implitude 4mm, in 3 c	lirections, 1h each (c	orresponding to appr	ox. 2.2G) with mount	ing legs mounted	
ditions	U	sage tei	mperature range		-10-	~50°C (daily mean te	emperature: 35°C or l	ess)		
Usage conditions	Sto	orage te	emperature range			-20~	60°C			
Usa		F	Humidity			30~85% rela	ative humidity			

*1 For models with the "both" specified, the % with respect to basal value that is the maximum value of the mutual difference between output values when the frequency is changed from 45 to 65Hz.

				Power transducers				T		
Reactive power transducers		Phase angle	e transducers	Power-factor transducers		Frequency transducers		Voltage phase angle transducers		
T-101HVAR	T-101SVAR	T-101HPA T-101HPA(U)	T-101SPA(U)	T-101HPF(U)	T-101SPF(U)	T-51HF	T-101SF	T-101SY		
0.5	0.25	2.0	1.0	3.0	2.0	1.0	0.5	1.0		
±0.5%	±0.25	±2% (±2.4°)	±1% (±1.2°)	±3%	±2%	±1% (±0.1Hz)	±0.5% (±0.05Hz)	±1% (±1.2°)		
±0.5%	±0.25	±2% (±2.4°)	±1% (±1.2°)	±3%	±2%	±1% (±0.1Hz)	±0.5% (±0.05Hz)	±0.7% (±0.84°)		
±0.25% (both)	±0.13%	±1% (±1.2°)	±0.5% (±0.6°)	±1.5%	±1%	_	_	±0.5% (±0.6°)		
±0.25%	±0.13%	±1% (±1.2°)	±0.5% (±0.6°)	±1.5%	±1%	±0.5% (±0.05Hz)	±0.25% (±0.025Hz)	±0.5% (±0.6°)		
_	_	±2% (±2.4°)	±1% (±1.2°)	±3%	±2%	_	_	_		
±0.5%	±0.25%	_	_	_	_	_	_	_		
120% of rated	l input voltage ted current	120%	of rated input volta	ge, 120% of rated	current	1	120% of rated voltage			
 Supply electricity	for 10s duration	Supply ele	ectricity for 10s dura	ation 10 times at 10	Supply electricity for 10s duration 10 times at 10s					
 10 times at 10s intervals Supply electricity for 10s duration Supply electricity for 10s duration 10 times at 10s intervals										
 Supply electricity 5 times at 5	y for 3s duration	Supply el	ectricity for 3s dura	tion 5 times at 5mi	n intervals					
 5 times at 5			-	2000VAC for 1min						
				2000VAC for 1min						
				2000VAC for 1 min						
				2000VAC for 1min						
	$10M\Omega$ or more (at relative humidity of 80% or less)									
	± 1500 V, pulse width: 1 μ s									
	\pm 1500V, pulse width: 1 μ s (current input circuits exempt)									
490m/s ² (50G), in 3 directions, 6 times with mounting legs mounted 16.7Hz, double amplitude 4mm, in 3 directions, 1h each (corresponding to approx. 2.2G) with mounting legs mounted										
-10~50°C (daily mean temperature: 35°C or less)										
 -20~60°C										
	30~85% relative humidity									
 *2 The perfor		o phaso anglo tran						10.000		

*2 The performance value of the phase angle transducer in parenthesis () corresponds to input conversion values for inputs of LEAD 60°-0~LAG 60°.

The performance value of the frequency transducer in parenthesis () corresponds to input conversion values for inputs of 45 to 55Hz or 55 to 65Hz. *3

*4 The performance value of the voltage phase angle transducer in parenthesis () corresponds to input conversion values for inputs of LEAD 60°~0~LAG 60°.

Performance

		Class	ification	Power transducere											
	Classification		Power transducers												
	Product name		DC level voltage	Isolators	High- speed	Limiter	Adders	Temperature transducers				First-order lag			
			Tansoucers	transducers		isolators			Resista	Resistance bulb Thermocouple		transducers			
	Model Box		T-51DL	T-51DR	T-101IS	T-101ISQ	T-51LM	T-101AD	T-51TP	T-101TPZ	T-101TC	T-101TCZ	T-51DS		
	Grade		0.25	0.25	0.25	0.25	0.25	0.5	0.5	0.5	0.5	0.5	0.5		
	Toleran	се	% with respect to basal value	±0.25%	±0.25%	±0.25%	±0.25%	±0.25%	±0.5%	±0.5%	±0.5%	±0.5%	±0.5%	±0.5%	
	Influenc tempera		% with respect to basal value upon change of $\pm 10^{\circ}$ from 23°C	±0.25%	±0.25%	±0.25%	±0.25%	±0.25%	±0.5%	±0.5%	±0.5%	±0.5%	±0.5%	±0.5%	
	Influenc frequen		$\%$ with respect to basal value upon change of $\pm5\%$ from rated frequency	_	_	_	_	_	_	_	_	_	_	_	
nce	Influenc voltage		% with respect to basal value upon change of $\pm 10\%$ from rated voltage	_	_	_	_	_	_	_	_	_	_	_	
orme	Continuous overload		120% of rated input value												
Performance	Instantaneous 1.5 times rated voltage		Supply electricity for 10s duration 10 times at 10s intervals (temperature transducers excluded)												
	overload	a j	2 times rated current	Supply electricity for 10s duration 10 times at 10s intervals (temperature transducers excluded)											
			between electric circuit and outer casing	2000VAC for 1min *2											
	Withsta	Withstand voltage	between input circuit and auxiliary power supply	2000VAC for 1min											
	voltage		between input circuit and output circuit	2000VAC/DC 2000VAC/DC 2000VAC/DC 2000VAC/DC for 1 min f											
			between output circuit and auxiliary power supply	2000VAC for 1 min											
	Insulatio	on	Test voltage: 500VDC	10MΩ or more (at relative humidity of 80% or less)											
	Noise			±1500V, pulse width: 1μs											
	resistan			\pm 500V, pulse width: 1 μ s (current input specifications are exempt)											
	Impact resistance		490m/s ² (50G), in 3 directions, 6 times with mounting legs mounted												
	Vibration resistance		16.7Hz, double amplitude 4mm, in 3 directions, 1h each (corresponding to approx. 2.2G) with mounting legs mounted												
itions	Usage temperature range		-10~50°C (daily mean temperature: 35°C or less)												
Usage conditions	Storage temperature range		-20~60°C												
Usage	Humidity			30~85% relative humidity											
	the Formadala with the "hoth" analysis of the 0/ with respect to beau value that is the residue with the the the hot is a formation of the residue of the re														

*1 For models with the "both" specified, the % with respect to basal value that is the maximum value of the mutual difference between output values when the frequency is changed from 45 to 65Hz.

Peripheral transducers										
AC current demand transducers (moderate time interval)	AC voltage demand transducers (moderate time interval)	Current transducers with power flow detection	Leakage current transducers	Voltage drop detectors Voltage rise detectors						
T-101HAA(DS) T-101HAV(DS)		T-101HAA(D)	T-51LG T-51LGF	T-101VDL T-101VDH						
0.5	0.5	0.5	1.0							
±0.5%	±0.5%	±0.5%	±1.0%	setting accuracy ±5%						
±0.5%	±0.5%	±0.5%	±1.0%	_						
±0.25% (both)	±0.25% (both)	±0.25% (both)	±1.0% *3	_						
_	_	±0.25%	_	_						
		120% of rated input value								
	Supply electricity for 10s durat	tion 10 times at 10s intervals (temp	perature transducers excluded)							
	Supply electricity for 10s durat	tion 10 times at 10s intervals (temp	perature transducers excluded)							
		2000VAC for 1min								
		2000VAC for 1min								
2000VAC/DC for 1min (in combination with a ZCT for leakage current transducers)										
 2000VAC for 1min										
10MΩ or more (at relative humidity of 80% or less)										
±1500V, pulse width: 1µs										
\pm 1500V, pulse width: 1 μ s (leakage current transducers exempt)										
490m/s ² (50G), in 3 directions, 6 times with mounting legs mounted										
 16.7Hz, double amplitude 4mm, in 3 directions, 1h each (corresponding to approx. 2.2G) with mounting legs mounted -10~50°C (daily mean temperature: 35°C or less)										
-20~60°C										
30~85% relative humidity										

*2 For T-51LG, the % with respect to basal value that is the maximum value of the mutual difference between output values when the frequency is changed from 40 to 2kHz.

For T-51LGF, the % with respect to basal value that is the maximum value of the mutual difference between output values when the frequency is changed from 45 to 60Hz.

•Fixed-load output (K Series)

• The active power, reactive power, frequency, phase angle, and power factor transducers are H Series transducers.

• For low-voltage circuits, grounding of the secondary sides of the instrument voltage transformer and current transformer is unnecessary.

• For low-voltage circuits, grounding of the secondary sides of the instrument voltage transformer and current transformer is unnecessary.

Constant-current/Constant-voltage output (H Series, S Series)

If the auxiliary power supply is DC, connect the \oplus side to "MA" and the \bigcirc side to "MB".

If the auxiliary power supply is DC, connect the \oplus side to "MA" and the \bigcirc side to "MB".

Fixed-load output

An output system that can be used only with the load resistance value connected to the output being a single, predetermined value and with which an error occurs if the load resistance value differs from the specified value.

Constant-voltage output/Constant-current output

An output system that can be used if the load resistance value connected to the output is within a predefined range, and is suited for cases where the load resistance value is unspecified and cases where future load increase is predicted.

Load

The full load resistance value connected to the output terminals of a transducer.

Output span

The difference between the upper-limit value and lowerlimit value of an effective output range.

Example 1: For an output of 5V, the span is 5V.

Example 2: For an output of 4~20mA, the span is 16mA.

Example 3: For an output of -5~0~5V, the span refers respectively to the + side span of +5V and the – side span of -5V.

•Auxiliary power supply (control power supply)

An AC power supply or DC power supply necessary for operation of the transducer and supplied from the exterior (i.e., not supplied from the measured circuit). If the voltage of the measured circuit is comparatively stable, it can be used for connection to the auxiliary power-supply terminals.

Accuracy (grade)

A term expressing the accuracy of a transducer classified according to the tolerance and limits of influence (influence of temperature, influence of frequency and other allowable limits of performance).

Example: The tolerance of a grade 0.5 transducer is within $\pm 0.5\%$. The tolerance for an input of 1000W and output of 5V is: $5V\times(\pm 0.5\%)=\pm 25mV$.

Output ripple (P-P)

An AC component contained in the output expressed by a ratio of the peak-to-peak value of the AC component and the span.

Response time

The time it takes for the output to settle within a specified range of a final stationary value when the input changes suddenly from one fixed value to another.

Ordinarily refers to the time it takes for the output to settle within $\pm 1\%$ of the rated output value centered at a final output value when a step input that gives rise to an output change of from 0% to approximately 90% of the effective output range or from 100% to approximately 10% of the effective output range is applied.

•Effective output range

A range within the output range in which predefined performance is guaranteed.

The diagram to the left is an input-output characteristics diagram for T-51KSS and T-51HSS. The effective output range is 0~0.8mA (the output range of 0.8~1mA is not an effective output range).

Saturation output

Although the output in the range 0~0.8mA is proportional to the input in the diagram above, the proportion of change of output gradually decreases and saturates with respect to the proportion of change of input in the 0.8~1mA region. Such an output is called "saturation output".

3-phase balanced circuit

When loads $\dot{Z}a$, $\dot{Z}b$ and $\dot{Z}c$ that are connected to a 3phase power supply are all equal, the respective voltages \dot{V}_{RS} , \dot{V}_{ST} and \dot{V}_{TR} are all equal in magnitude and phase difference among the respective voltages. The respective line currents \dot{I}_{R} , \dot{I}_{S} and \dot{I}_{T} are also all equal in magnitude and phase difference. Such a circuit is called a 3-phase balanced circuit.

Orbital and the second seco

When loads $\dot{Z}a$, $\dot{Z}b$ and $\dot{Z}c$ that are connected to a 3phase power supply are not equal, the respective line currents \dot{I}_R , \dot{I}_S and \dot{I}_T are also not equal in magnitude and phase difference among the respective currents. Such loads are called 3-phase unbalanced loads.

Among phase angle transducers, there are those that can be used with 3-phase unbalanced loads (for 3-phase unbalanced loads) and those that cannot be used with 3phase unbalanced loads (for 3-phase balanced circuit).

Third harmonic

A voltage or a current with frequency that is 3 times that of the fundamental frequency voltage or current (fundamental wave: a 60Hz AC voltage or current in the case of an input frequency of 60Hz).

When a third harmonic or other harmonic is contained, the waveform becomes distorted and becomes a cause of measurement error.

Burnout

A term often used with temperature transducers and refers to a function by which, when an input line into the temperature transducer or a temperature sensor beyond the input line, becomes disconnected, the output is rises above the effective output range (normally, the output is increased ... positive burnout).

Cold junction compensator

A thermocouple sensor's electromotive force is input to a thermocouple temperature transducer. The voltage corresponds to a temperature less than T°C, the temperature measured at the point only affected by the ambient temperature, Ta°C, thereby compensating for the Ta°C part. This action is performed by a cold junction compensator, which is either attached externally to the transducer or built-in.

Zero adjuster

With a zero adjuster, the output range is increased or decreased by a fixed value (approximately $\pm 0.3 \sim \pm 5\%$ with respect to the span) as shown in the figure below.

Span adjuster

With a span adjuster, the output increases or decreases at the same proportion $(\pm 3\% \sim \pm 15\%)$ with respect to the rated output) with zero input as the base point.

Mitsubishi Electric Indicators and Transducers

MITSUBISHI ELECTRIC CORPORATION

HEAD OFFICE: TOKYO BUILDING, 2-7-3, MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN